
A Performance Driven Approach for Hardware Synthesis of

Guarded Atomic Actions

by

Daniel L. Rosenband

Bachelor of Science, Computer Science and Engineering
Massachusetts Institute of Technology, 1997

Master of Engineering, Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1998

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2005

Certified by. .
Arvind

Johnson Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Performance Driven Approach for Hardware Synthesis of
Guarded Atomic Actions

by
Daniel L. Rosenband

Submitted to the Department of Electrical Engineering and Computer Science

on August 26, 2005, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Hardware designers are facing new challenges in the design of complex ASIC’s and processors
as their sizes approach up to 100 million logic gates. We believe no adequate solution exists
that allows designers to specify hardware which takes full advantage of the available resources
in these devices. The hardware design specification languages are either too low level to
support efficient large scale design (for example, Verilog), or the language and synthesis
methodology is so high-level that the designer’s micro-architectural ingenuity is lost in the
design process. This results in circuits that oftentimes do not match the designer’s expectations
(for example, C-based behavioral synthesis).

This thesis presents a design methodology and related synthesis algorithms that address
several of the key issues of hardware design specification and high-level synthesis while
avoiding the pitfalls of past approaches. The areas we focus on are modular compilation and
performance specification. The modular flow allows for the separate compilation of modules
and ensures the correct usage of module interfaces by attaching annotations with well defined
semantics to them. We also introduce performance specifications as a core part of a design
description. This allows a designer to more easily achieve the expected design performance
and it allows for rapid micro-architectural exploration. We chose guarded atomic actions as the
foundation of this research because of their clean execution semantics. These semantics allow
for easy design transformation (either manual or compiler driven) while ensuring that the
correctness of the design is maintained.

We demonstrate the practicality and power of this methodology using several
examples, such as a processor which from a single design description can automatically be
transformed into an unpipelined processor or a superscalar processor simply by changing a
single-line performance specification.

Thesis Supervisor: Arvind
Title: Johnson Professor of Electrical Engineering and Computer Science

5

Acknowledgments

I would like to thank my advisor Professor Arvind for his support and advice. He is a great
mentor and a joy to work with. Many of the ideas in this thesis were developed jointly with
him and I appreciate the many hours we spent refining the ideas to obtain more satisfactory
results. At a personal level Arvind has always been fun to spend time with. I thank my
committee members, Professors Krste Asanovic, Srini Devadas, and Chris Terman for their
time and helpful feedback. I would like to thank James Hoe for the many interesting
discussions about rule-based synthesis. Nirav Dave and Michael Pellauer were great sounding
boards for the ideas in this thesis and were invaluable with their help in using the Bluespec
compiler. Rishiyur Nikhil, Jacob Schwartz, Mieszko Lis, and Joe Stoy provided useful
feedback during the development of the thesis ideas. Ed Suh and Charles O’Donnell were fun
office mates / office neighbors. Our baseball discussions provided good breaks from the thesis
work. I thank my parents for their constant love and support throughout my studies. My
brother and sister were also always supportive. Special thanks to Jihye Whang for the many
good times we have had together.

6

7

Contents
Chapter 1..11
Introduction...11

1.1 The designer’s dilemma...12
1.2 Why design exploration is important...13

1.2.1 Longest prefix match (LPM) ... 14
1.2.2 LPM pipelines... 15
1.2.3 LPM implementation results.. 17
1.2.4 LPM lessons learned.. 17

1.3 Why is design exploration difficult in traditional hardware design flows?........18
1.4 Guarded atomic actions..19
1.5 Thesis contributions ...20

1.5.1 Performance specifications and their implementation.. 21
1.5.2 Modular rule-based synthesis... 22

1.6 The failed promise of high-level behavioral synthesis23
1.7 Thesis outline..24

Chapter 2..25
Guarded Atomic Actions..25

2.1 Guarded atomic action execution model ...25
2.2 Guarded atomic action examples...27
2.3 Why guarded atomic actions are useful...29
2.4 Synthesis of guarded atomic actions..30

Chapter 3..35
The Modular Rule Language ..35

3.1 The Modular Rule Language (MRL)...36
3.1.1 MRL abstract grammar ... 36
3.1.2 Rules ... 38
3.1.3 Interface methods .. 38
3.1.4 Actions ... 39
3.1.5 Local bindings... 40
3.1.6 Module hierarchy ... 40
3.1.7 Syntactic sugar .. 42
3.1.8 MRL vs. Bluespec and ATS ... 42

3.2 MRL to FRL translation...43
3.2.1 Flattening ... 45
3.2.2 When lifting... 48

3.3 FRL execution semantics ...51
3.3.1 Rule execution .. 51
3.3.2 Sequential execution of rules ... 54

3.4 Chapter summary ...55
Chapter 4..57
Modular Compilation...57

4.1 The goal of modular compilation ..59

8

4.1.1 FIFO interface wiring ... 61
4.1.2 FIFO interface scheduling.. 62

4.2 Interface method annotations...64
4.2.1 Conflict matrices .. 68

4.3 Module hierarchy ...70
4.4 Rule scheduling using module interface annotations..72

4.4.1 Rule validity ... 72
4.4.2 Rule scheduling... 73
4.4.3 Rule circuit generation... 75

4.5 Deriving module interface annotations..77
4.6 Module compilation ...78
4.7 Results ..81
4.8 Possible improvements to the modular flow ...82
4.9 Chapter summary ...84

Chapter 5..85
Performance Specification and the EHR...85

5.1 Understanding scheduling as rule composition...87
5.1.1 Rule composition ... 87
5.1.2 Rule composition using conditional actions ... 89
5.1.3 Performance constraints ... 91

5.2 Transforming composed rules ...93
5.2.1 Composition of rules with only register method calls... 94
5.2.2 The Ephemeral History Register (EHR) ... 96

5.3 Modular composition ...98
5.4 Performance driven composition algorithm..101
5.5 Specifying schedules for a pipelined processor ..103
5.6 Mixed rule and method constraints..109
5.7 Generalizations...111
5.8 Chapter summary ...111

Chapter 6..113
Circuit and Performance Evaluation ...113

6.1 Pipeline FIFO circuits ..114
6.2 Multi-constrained modular composition ...118
6.3 Processor and GCD evaluation ..120
6.4 Chapter summary ...127

Chapter 7..129
Related Work...129

7.1 Guarded atomic actions..129
7.2 Traditional behavioral synthesis ..130
7.3 Other efforts..131

Chapter 8..133
Summary and Future Work..133

8.1 Future work ..134
Bibliography ..137

9

List of Figures

Figure 1-1: LPM lookup ..14
Figure 1-2: LPM algorithm..15
Figure 1-3: LPM pipelines...16
Figure 1-4: LPM results...17
Figure 1-5: Processor pipeline constraints ..21
Figure 2-1: Guarded atomic action execution model..26
Figure 2-2: GCD rules ...27
Figure 2-3: GCD execution example...27
Figure 2-4: Two stage processor ...28
Figure 2-5: Two stage processor rules ..29
Figure 2-6: Synthesized guarded atomic actions ..30
Figure 2-7: Simple state update arbitration ...31
Figure 2-8: Prioritized state update arbitration ...32
Figure 3-1: MRL grammar ..37
Figure 3-2: MRL naming conventions ..38
Figure 3-3: FRL grammar..44
Figure 3-4: The MODMERGE procedure..46
Figure 3-5: Inlining ..46
Figure 3-6: The FLATTEN procedure ...46
Figure 3-7: Proc / Ctr module merge...47
Figure 3-8: Simple when lifting...49
Figure 3-9: Conditional when lifting...49
Figure 3-10: When lifting transformations..50
Figure 4-1: A modular design..59
Figure 4-2: 2-Element FIFO..60
Figure 4-3: FIFO interface...61
Figure 4-4: Simple use of FIFO module ...62
Figure 4-5: FIFO method overlap..63
Figure 4-6: Interface method annotations ...67
Figure 4-7: Register annotations..68
Figure 4-8: Three FIFO conflict matrices ...69
Figure 4-9: MAKETREE algorithm ...71
Figure 4-10: MAKETREE operation..71
Figure 4-11: VALIDRULE procedure..73
Figure 4-12: DeriveRel procedure...74
Figure 4-13: Annotation lattice..74
Figure 4-14: Modular circuit generation ...75
Figure 4-15: Derived FIFO annotations ..77
Figure 4-16: Modular COMPILE procedure..80
Figure 4-17: Flat vs. modular compilation..82
Figure 4-18: Non-tree module structure..83

10

Figure 5-1: ARPG syntax ..92
Figure 5-2: Method indexing procedure..95
Figure 5-3: The Ephemeral History Register ..96
Figure 5-4: EHR conflict matrix..97
Figure 5-5: Method renaming procedure ..100
Figure 5-6: Performance driven scheduling algorithm...102
Figure 5-7: PRUNE procedure...103
Figure 5-8: 4-stage processor code..104
Figure 5-9: 4-stage processor pipeline ..105
Figure 5-10: Single-element FIFO with bypass..105
Figure 5-11: bE FIFO ..107
Figure 5-12: Cache block diagram ..109
Figure 5-13: Cache code..110
Figure 6-1: Original FIFO circuit ..114
Figure 6-2: Pruned FIFO data register ..115
Figure 6-3: No flow control full register (deq.en = deq.rdy)..116
Figure 6-4: Flow-through FIFO circuit ...117
Figure 6-5: Flow-through FIFO circuit optimized (1) ..118
Figure 6-6: Flow-through FIFO circuit optimized (2) ..118
Figure 6-7: Split EHR..120
Figure 6-8: GCD results...121
Figure 6-9: 4-stage processor results...123
Figure 6-10: Component delays ..123
Figure 6-11: Moving logic across a mux ...125
Figure 6-12: FIFO states after deq and clear operations...126

11

Chapter 1

Introduction

Hardware designers are facing new challenges in the design of complex ASIC’s and processors

as their sizes approach 10’s of millions or even 100 million logic gates. Some of these

challenges exist simply because of the dramatic increase in design size, while others exist due

to the shrinking of the physical feature size of the underlying semiconductor technology.

Addressing these scaling challenges is important and is continuing to attract substantial

attention in the EDA community. However, we believe no adequate solution exists that allows

designers to specify hardware that takes full advantage of the available resources in these

devices. The hardware design specification languages are either too low level to support

efficient large scale design (for example, Verilog), or the language and synthesis methodology

is so high-level that the designer’s micro-architectural ingenuity is lost in the design process,

resulting in circuits that oftentimes do not match the designer’s expectations (for example, C-

based behavioral synthesis).

This thesis presents a design methodology and related synthesis algorithms that

addresses several of the key issues of hardware design specification and high-level synthesis

while avoiding the pitfalls of past approaches. The areas we focus on are design re-use (how

can we ensure the correct usage of module interfaces), and performance specification (how can

we make performance specifications a part of the design description). We demonstrate the

practicality and power of this methodology using several examples. For example, we show a

12

processor which from a single design description can be transformed automatically into an

unpipelined processor or a superscalar processor simply by changing a one-line performance

specification.

We chose guarded atomic actions as the foundation of this research because of their

clean operational semantics. These semantics allow for easy design transformation (either

manual or compiler driven) while ensuring that the correctness of the design is maintained. In

addition, past work has shown that complex hardware can be conveniently described using

guarded atomic actions[3], and that these descriptions can automatically be transformed into

hardware[27-29]. In addition, Bluespec Inc. has developed an industrial strength high-level

language for rule-based synthesis which facilitated our experimentation[8].

In the next sections we describe more clearly why existing design specification and

synthesis solutions are inadequate. We then introduce guarded atomic actions (rules) and show

how Hoe and Arvind were able to generate efficient circuits from rule-based descriptions.

Next, we describe the thesis contributions and conclude the chapter with an outline for the

remainder of the thesis.

1.1 The designer’s dilemma

Simply by looking at the numbers, it is clear that hardware design is becoming increasingly

complex. In the year 2000 a complex ASIC had roughly 1 million logic gates. Today in 2005,

it has roughly 10 million logic gates, and by the year 2010 a complex ASIC will likely have

100 million logic gates. At the same time, due to budget constraints, the design team size must

remain constant at 10 to 30 people per ASIC and the design time must not exceed 18 months.

Hence, designers must become more productive just to keep up with the design size.

Along with the sheer size of the designs, there are other factors that are stressing the

design process. At the physical level, many electrical issues (crosstalk between routes, power

distribution, etc.) are becoming relevant and require new tools and iterations in the design flow.

At the front-end of the design process, which we focus on in this thesis, a single designer must

now design blocks with 1 million or more logic gates—blocks that are systems themselves. As

a result, whereas a designer used to receive a mostly complete micro-architectural specification

from an architect, designers must now develop their own complex interfaces, choose data

structures and algorithms, and develop the block’s micro-architecture. This means that

13

designers now have dramatically more work to do than simply “coding up” a larger block.

Hence, their workload is increasing by more than 2x every 18 months.

There are three ways a designer can satisfy this increased workload:

(i) The design flow improves.

(ii) The designer gets “better”.

(iii) The designer cuts corners by making conservative (easy to implement) but

wasteful (area, performance, power, etc.) design choices without exploring

alternatives.

We believe most of the improvement in design productivity has been achieved by (ii)

and (iii) over the past 10 years, and is increasingly achieved via conservative and not well

thought out design (iii). The reason for this is that the front-end of the design flow

(specification, verification, and synthesis) has not changed substantially in this time frame and

its use has matured—designers will not become much more efficient at writing RTL Verilog.

(Clearly, the design tools themselves have improved to handle larger designs, a big challenge in

itself, but the flow has remained mostly constant.)

Relying on ever more conservative and wasteful design is not an attractive prospect for

improving productivity of hardware designs. Much ingenuity and potential is being wasted by

not allowing designers the flexibility to experiment with micro-architectures, not providing the

infrastructure to incorporate complex data structures into the design, and not providing

mechanisms to easily re-use both mundane and complex blocks. As a result, market demands

for low power, low cost and high performance ASIC’s are not fully satisfied. This is the

motivation for our research on high-level synthesis, the goal of which is to allow the designer to

take advantage of the tremendous resources that large semiconductors provide.

1.2 Why design exploration is important

As previously mentioned, we believe that design exploration is an important part of the design

process that is falling by the wayside due to limitations in the traditional RTL design flow as

well as due to the severe time constraints in the design process. A contribution of this thesis is

to enhance our ability to experiment with alternate designs—either by allowing modules with

different performance characteristics to be easily and safely swapped in and out of a design, or

14

by allowing the designer to easily trade-off such factors as cycle time and throughput via

performance constraints.

To motivate this aspect of the design process we present a small case study[2]. This

should both enhance the claims on why the design flow needs to change and it will also justify

some of the work we present in later chapters. This example will also be used to highlight why

traditional behavioral synthesis is not the correct approach to improving design productivity.

1.2.1 Longest prefix match (LPM)

Longest prefix match (LPM) is a key hardware component in high-end IP routers[22]. The

basics of the problem are: given a 32-bit IP address (IPA) and a table of address / route pairs,

return the route corresponding to the table entry with the longest matching address prefix. Any

reasonable implementation must be pipelined (throughput is a major driver in this problem),

and must utilize off-chip memories (the tables are too large to store on-chip). This is illustrated

in Figure 1-1.

Figure 1-1: LPM lookup

Many complex algorithms have been developed to optimize the throughput and latency

of the longest prefix match problem. Most of these algorithms trade off the compactness of the

table representation in the SRAM with the number and width of the memory accesses. In

comparison to state-of-the-art lookup algorithms, the lookup procedure used for this study is

simplistic, but suitable to illustrate the challenges facing hardware designers. (Understanding

the details of the algorithm is not required to understand the points we will make about the

resulting hardware.)

The basic idea behind the lookup algorithm (see Figure 1-2) is to store the lookup table

as a tree data structure. Starting at the root, each non-leaf node contains a table that points to

Route 32b
Address

SRAM
Routing Table

LPM Circuit

15

the appropriate node at the next level in the tree. These tables are indexed using one of three

sections of the IP address. Hence, each lookup requires up to three memory references

depending on how soon a leaf node is encountered—leaf nodes contain the desired route

information:

int LPM(IPA ipa) {
 int p;

 /*** first memory reference ***/
 p = SRAM [rootTableBase + ipa[31:16]];
 if (isLeaf(p))
 return p;

 /*** second memory reference (if required) ***/
 p = RAM [p + ipa [15:8]];
 if (isLeaf(p))
 return p;

 /*** third memory reference (if required) ***/
 p = RAM [p + ipa [7:0]];
 return p; // must be a leaf
}

Figure 1-2: LPM algorithm

1.2.2 LPM pipelines

The key constraint in implementing this algorithm efficiently is that it must provide

high throughput. Because the external memories usually have a read latency of at least 4

cycles, this means that the design must be pipelined and multiple lookups must occur

simultaneously. There are multiple ways that such pipelining can be performed. We illustrate

three of them in Figure 1-3:

a) Static pipeline: each lookup is statically assigned a time when it accesses memory.

If the memory latency is 3, then lookup 1 accesses memory on cycles 0, 3, and 6;

packet 2 accesses memory on cycles 1, 4, 7; packet 3 on cycles 2, 5, 8; and packet

4 on cycles, 9, 12, and 15. This is the implementation that many designers would

prefer because of its static nature and simplicity. It has the drawback that memory

bandwidth, and hence throughput, is wasted since some lookups will not require

three memory references.

16

b) Dynamic pipeline: each lookup only performs the memory references that are

required. By using FIFO’s between lookup stages we achieve elasticity in the

pipeline and hence higher throughput than in the static case. A drawback is that the

FIFO’s require more state than the static pipeline to support optimal throughput.

c) Circular pipeline: Addresses rotate through the lookup state machine until the

destination route is found. The result is then placed in a completion buffer so that

the results can be returned in the correct order. This design achieves the same

throughput as the dynamic pipeline since memory bandwidth is dynamically

assigned to the addresses that require additional memory references (those that do

not require more memory references would already have been placed in the

completion buffer).

(a) static (b) dynamic (c) circular

Figure 1-3: LPM pipelines

All three of these pipelines are reasonable. However, we believe that most designers

would pick the static pipeline (a) or the dynamic pipeline (b) as the design of choice. The static

design would be chosen for its perceived simplicity because of its static nature, while the

dynamic pipeline would be chosen for its improved throughput. The circular pipeline contains

a more complicated architecture and implementing a completion buffer correctly can be

challenging. However, the circular pipeline has the advantage of being the most robust design

with respect to changes in the lookup algorithm, changes in memory latency, etc.

Precisely what the trade-offs for area, timing, and throughput are cannot be determined

unless the designs are actually implemented. It should be obvious that designers will be faced

with many similar choices when designing logic blocks with over one million gates, except that

the stakes are orders of magnitude higher in such cases. Since we find surprises in the

implementation of these simple LPM pipelines, designers would likely find numerous surprises

if they took a close look at many of their larger blocks.

17

1.2.3 LPM implementation results

Figure 1-4 shows implementation results for all three LPM pipelines. All designs, except for

Static 2, were implemented by two different designers in two different design languages

(Verilog and Bluespec). We show only one set of numbers for each design since the variation

between the results for each pair of designers was less than 10%.

LPM Pipeline Area

(gates)

Speed

(ns)

Memory

Utilization (%)

Static 8,898 3.60 63.5

Static 2 2,391 3.32 63.5

Dynamic 15,910 4.70 99.9

Circular 8,170 3.67 99.9

Figure 1-4: LPM results

Two of the results were surprising. First, the circular pipeline turned out to be

substantially more area efficient than the dynamic pipeline. The reason for this was that the

area overhead of the FIFO’s in each stage of the dynamic pipeline could be aggregated in the

completion buffer. Second, we were surprised that the static pipeline was not substantially

smaller than the other designs—given its simple architecture we expected a low gate count.

After asking a third designer to implement the static pipeline we obtained substantially better

results—an almost 75% reduction in gate count (Static 2). The reason for this reduction in gate

count was that rather than using a separate state machine for each active lookup, the state

machines could actually be shared among the simultaneously occurring this—this was a micro-

architectural optimization.

1.2.4 LPM lessons learned

The results of this case study confirm two insights:

• Micro-architecture drives the performance (area, timing, etc.) of a design.

18

• Making it easier to experiment with architectures to obtain realistic area, timing,

and performance numbers is a key component of any specification and synthesis

framework for next-generation ASIC’s.

The first point may seem trivial. However, it is often ignored when studying hardware

synthesis as the focus is usually on how one language compares to another language when

implementing a given micro-architecture. These differences are usually in the single digit

percentage range, much smaller than changes between micro-architectures. In this small

example we had a variation of more than 6x in area, 30% in timing and 35% in throughput.

One can only imagine how significant these numbers become in much larger blocks.

The second insight is a consequence of the fact that micro-architecture is so important.

It states that a key component of any new synthesis and specification system must make it

easier to implement and experiment with micro-architectures. For this to happen, advances are

required in two dimensions: (i) it must become easier to specify a micro-architecture and (ii)

changing the micro-architecture of part of the design, for example by adding a pipeline stage or

by swapping in a high performance module for a lower performing one, should not break the

rest of the design. This thesis contributes in both of these dimensions.

1.3 Why is design exploration difficult in traditional hardware design

flows?

A traditional RTL design flow requires a designer to schedule all pipelines and resources before

coding begins. The designer must not only be aware of the scheduling, but must also

implement it—this means coding the scheduling state machines, implementing arbitration

circuits to shared resources and coding the multiplexer (mux) logic that ensures the correct

values are written to each state in every cycle. This process has the advantage of giving the

designer full power over implementation details. Generally it also ensures that throughput and

latency performance expectations are met since the designer carefully crafted the scheduling

logic.

The disadvantage of this approach is that the scheduling logic becomes deeply

entwined in the functional part of the design. This leads to verification challenges because of

the difficulty in identifying whether mistakes were made in the scheduling or functional logic.

More interesting for this thesis, the process also makes the design rigid with respect to design

19

modification and makes design exploration impractical. Adding a pipeline stage because cycle

times where not met, replacing a memory with another memory that has larger latency, or

changing the access priorities of a shared resource often has a ripple effect through the entire

design. Any of these changes require modifications to the schedule and often a substantial

effort to modify the corresponding logic. As a result, designers strive for conservative design

so that they are unlikely to have to make changes at a later stage. Design exploration as we

advocated in Section 1.2 is rarely considered due to the effort involved in making the required

changes.

Often the only time design changes are considered is in the synthesis or physical design

process. If timing closure is posing substantial problems then every effort is first made to

restructure combinational logic to reduce the critical path. Such changes tend not to alter the

scheduling logic and are less error-prone than, for example, the restructuring of a pipeline.

Only if timing can absolutely not be met via combinational logic changes are pipeline changes

considered. Because of the effort involved, these often then lead to delays in the chip design.

1.4 Guarded atomic actions

This thesis builds on guarded atomic actions as a foundation. It is a design style that is quite

different from traditional RTL design and has the potential to address the shortcomings of the

RTL design process. Guarded atomic actions, which we also refer to as rules, have been used

for decades in the form of asynchronous languages to describe distributed algorithms[10, 33].

Some of the examples in the hardware domain are Dill's Murphi[16], Straunstrup's

Synchronous transactions[51], Sere's Action systems[43], and Arvind & Shen’s TRS’s[3, 50].

The main idea underlying all such descriptions is that any hardware system has a (structural)

state component that can be captured by a set of variables that represent registers or storage,

and the behavior is nothing but a set of rules, that is atomic actions with guards, on this state. A

precise and useful semantics emerges from the fact that any legitimate behavior of the system

can be understood as a series of atomic actions on this state.

The key difference between this design style and traditional RTL is that a schedule of

rule executions need not be specified by the designer. Instead, designs are constructed such

that the design is functionally correct for any order of rule execution. In the context of a

hardware design, this means a designer can focus on individual hardware components without

20

worrying about interactions with other parts of the design. For example, a rule could be used to

represent a pipeline stage, or even the logic to execute a particular instruction in a pipeline

stage. This rule would describe the behavior of the pipeline stage in isolation and would not

need to address what happens if the previous or following stages execute simultaneously. The

reason that such an abstraction is possible is that the behavior of any execution must be

explainable as the sequential and atomic execution of each rule.

Almost by definition, it is easier to create functionally correct designs using guarded

atomic actions than using traditional RTL because the entire rule-based description focuses on

functionality. In contrast, RTL contains a mix of functionality and scheduling. This focus on

functionality along with the operational semantics of rule-based descriptions also makes them

amenable to formal verification.

Up until recently, a major drawback has been that efficient circuits could not be

generated from rule-based descriptions. The primary reason for this is that any reasonable

hardware requires many components to execute in parallel. However, parallel execution

appears to contradict the requirement that rule execution must appear to occur sequentially.

Hoe and Arvind[27-29] were able to solve this problem by generating circuits that allow

multiple rules to execute concurrently within each clock cycle while maintaining the

appearance of sequential execution. The Achilles heel in this process is that the designer relies

on a compiler to derive a scheduler that executes a sufficient number of rules in each cycle. If

the compiler does not find the expected parallelism then the designer has had only unattractive

solutions to fix the problem.

In summary, for designs where the compiler derives sufficient parallelism guarded

atomic actions present an attractive model for hardware design. By focusing on functionality in

each pipeline stage rather than on the scheduling logic details a designer is able to more easily

refine a design to add functionality or satisfy timing constraints. Design exploration using rules

is easier than traditional RTL for the same reason.

1.5 Thesis contributions

The two main thesis contributions are a modular rule-based synthesis flow and a performance

driven synthesis flow that allows a designer to specify which rules should execute

simultaneously in each cycle. We describe these contributions in the following subsections.

21

1.5.1 Performance specifications and their implementation

As previously mentioned, the motivation behind this thesis was to improve the design

methodology and synthesis algorithms for large semiconductors. Guarded atomic actions have

many attractive attributes that we believe makes them a good candidate for large scale

hardware design. However, as outlined, several key problems exist in the methodology. The

primary problem has been that the designer cannot control the scheduling process, leading to

unpredictable and at times unacceptable performance (throughput). This thesis presents new

synthesis algorithms that solve this problem. The basic idea behind the algorithms is that the

designer should write the rules as before but can now also include a performance specification.

The performance specifications specify which rules should execute concurrently within a cycle

and what order they should appear to execute in. This allows a designer to precisely specify

what the scheduling for a given micro-architecture should be without needing to explicitly code

the scheduler, the mux’s, etc., as would be required in a traditional RTL flow.

An example of the use of performance specifications is a processor pipeline. Assuming

rules F (fetch), D (decode), E (execute), M (memory), and W (write back) describe their

respective pipeline stages, a designer could first synthesize and simulate the design to verify

that the functionality is correct. The designer would then examine the performance of the

circuits. In Hoe and Arvind’s synthesis framework it is possible that only the rules

corresponding to alternating pipeline stages can execute together within a cycle. Such a circuit

remains functionally correct since the processor still executes correctly, but is clearly

unacceptable from a performance standpoint. In the synthesis flow proposed in this thesis, the

designer feeds the original, unaltered, processor description along with performance constraints

into a compiler. For the three constraints shown in Figure 1-5 the compiler would generate (a)

an unpipelined processor, (b) a pipelined processor in which all stages can execute

concurrently, and (c) a superscalar processor in which two instructions can concurrently

execute in each stage.

a) F < D < E < M < W
b) W < M < E < D < F
c) W < W < M < M < E < E < D < D < F < F

Figure 1-5: Processor pipeline constraints

22

This methodology provides the benefits of rule-based design—the focus of the design

description is functionality rather than scheduling logic—while maintaining the ability to

control the scheduling such that a designer’s intent is not lost in the design process. The high-

level performance specifications also allow a designer to experiment and change the scheduling

more rapidly than is possible in traditional RTL design.

1.5.2 Modular rule-based synthesis

The second major contribution of this thesis is a modular compilation flow for a rule-based

synthesis system. The challenge in this part of the thesis is to create an abstraction that allows

rules to interact with modules while maintaining their atomic and sequential semantics. We

achieve this by introducing a set of interface method annotations that specify how methods

interact. The annotations provide sufficient information to determine whether two rules that

call a module’s methods can be scheduled to execute concurrently while maintaining the

appearance of executing sequentially and atomically. We also present a compilation algorithm

that shows how annotations can be propagated through a module hierarchy to derive the

annotations for higher-level modules.

This modular compilation flow is important for several reasons. In the context of rule-

based synthesis, one of the values of the modular flow is that it makes the design flow scalable

and capable of handling larger designs. A broader contribution is that the modular flow

presents an attractive model for design reuse and intellectual property (IP) exchange. By

attaching scheduling annotations to module interfaces we introduce constraints on how a

module can be used, for example that the FIFO enqueue and dequeue methods must not be

called simultaneously. A compiler then ensures that these constraints are not violated. This

contrasts with traditional IP exchange in which a designer must read through a document and

manually ensure that the block is used correctly.

 Both the modular compilation and performance specification contributions simplify

the design experience. The technical link between them is that the performance specifications

rely on the module annotations. In the modular flow, annotations are derived to describe a

module’s behavior. In the performance specification flow, the designer specifies constraints

using exactly the same type of annotations and the compiler transforms the design to satisfy

23

these constraints. The modular synthesis algorithms can then be used to compile the resulting

design.

1.6 The failed promise of high-level behavioral synthesis

In this section we briefly review how the framework of this research differs from traditional

behavioral synthesis. We discuss related work at the end of the thesis but briefly review

traditional behavioral synthesis in this section since it is most closely related.

High-level behavioral synthesis has been proposed as a solution to help designers

produce designs of ever increasing sizes—precisely the problem this thesis targets.

Approaches have used new specification languages ranging from behavioral Verilog[32], to

C[19], to SystemC[41, 53]. These languages themselves are far richer than traditional RTL

languages (Verilog and VHDL) and hence were assumed to hold promise in alleviating the

design process. However, we believe the major reason for these tools’ failure among designers

is their attempt to automatically infer micro-architectures.

The LPM problem from Section 1.2 illustrates why traditional behavioral synthesis did

not succeed. In a behavioral flow the designer would write the LPM procedure, as written in

Figure 1-2. The behavioral synthesis tool would then infer the state, data paths and control

logic to implement the procedure. An advanced tool would perhaps also pipeline the design.

But which pipeline would it choose? How much state does it infer? What will the resulting

throughput be? All these questions are unknowns before the synthesis tool is run.

Additionally, there are insufficient mechanisms to direct the synthesis process, for example to

choose the static pipeline as opposed to a dynamic pipeline. Hence, the designer is rolling dice

in this process and hoping that the tool chooses a “good” implementation. If the outcome is not

as desired, there is little the designer can do to direct the implementation.

In contrast to traditional behavioral synthesis approaches, our philosophy has been not

to preempt the ingenuity of the designer, especially when it comes to choosing a micro-

architecture. Our goal is to provide the designer the mechanisms to easily create and

experiment with architectures of his or her choosing.

We should note that behavioral synthesis tools have been successful at optimizing

computational data paths in DSP style designs. They are very good at taking a control data-

flow graph (CDFG) for DSP style computations[18, 19, 23, 32] and transforming the graph to

24

optimize throughput, latency, area, etc. However, these algorithms become less effective when

they do not control the entire schedule and need to interact with external components, for

example the memory in the IP example. In addition, CDFG synthesis tools generally do not

handle dynamic design properties efficiently because they create static schedules for the design.

We saw in the LPM example that a static schedule is not necessarily the optimal design choice.

It is our belief that DSP-style design is important but that it represents only a small sub-

set of the design space. Our focus is on allowing the designer to more efficiently express

designs that contain a mix of data paths, state machines, and complex control logic, something

CDFG compilation does not handle efficiently.

1.7 Thesis outline

The next chapter presents an overview of guarded atomic actions and the synthesis algorithms

that Hoe and Arvind developed for them. The chapter is a review to assist the reader in

becoming familiar with guarded atomic actions. Chapter 3 presents a new modular rule-based

language (MRL) and an operational semantics that specifies how MRL must behave. Chapter

4 then introduces a modular synthesis flow that shows how to generate hardware from MRL

programs. A key contribution in this chapter is a set of interface scheduling annotations that

specify how a module can be used. Chapter 5 presents a new scheduling algorithm that allows

a designer to specify performance constraints. A synthesis algorithm accepts the constraints

and the original design as input and produces as output a design that satisfies the performance

constraints and is also guaranteed to be functionally equivalent to the original. Chapter 6

examines and evaluates the circuits that are produced by the synthesis algorithms from Chapter

5. In Chapter 7 we discuss related work, and conclude in Chapter 8 with a brief summary of

the thesis.

25

Chapter 2

Guarded Atomic Actions

This thesis uses guarded atomic actions as a foundation to build on, primarily because of their

clean semantic model, but also because of Hoe and Arvind’s initial successes in synthesizing

efficient logic from their descriptions. This chapter presents a review of guarded atomic

actions: their operational semantics, their use, their benefits, and the basics of Hoe’s and

Arvind’s synthesis algorithm.

2.1 Guarded atomic action execution model

Each atomic action (or rule) consists of a body and a guard. The body describes the execution

behavior of the rule if it is enabled. The guard (or predicate) specifies the condition that needs

to be satisfied for the rule to be executable. We write rules in the form:

rule Ri: when πi(s) =>
 s := δi(s);

Here, πi is the predicate and s := δi(s) is the body of rule Ri. Function δi is used to compute the

next state of the system from the current state s.

26

The execution model for a set of rules is to non-deterministically pick a rule whose

predicate is true and then to atomically execute that rule’s body. The execution continues as

long as some predicate is true:

while (some π is true) do
 1) select any Ri , such that πi(s) is true
 2) s := δi(s); // update the state

Figure 2-1: Guarded atomic action execution model

We often refer to this as the atomic and sequential execution model because atomicity

and sequential execution are its two key properties. By atomic execution we mean that a rule

can never appear to execute partially. Hence, the state of the system should only be observed

either before the rule begins executing or after it completes execution. By sequential execution

we mean that it must appear that rules execute in some sequential order. This means that a rule

must observe all state updates that rules earlier in the sequence performed. Similarly, a rule

must not observe any of the state updates that rules later in the sequence perform. We provide

a more formal definition of this model in the next chapter.

A property of the guarded atomic action execution model is that rules do not always

execute when their guards (predicates) are satisfied. For example, suppose we are given the

two rules R1 and R2 below and the initial state of the system is x = 0, y = 0, ctr = 0.

R1: when (x == 0) =>
 x := x + 1;

R2: when (x == y) =>
 ctr := ctr + 1;

Both rules’ predicates are initially true. Thus, either rule can execute first. After executing rule

R1 we obtain the state: x = 1, y = 0, ctr = 0. At this point, rule R2 has been disabled since its

predicate is no longer true. Hence, R2 cannot execute after a single execution of R1. If we had

chosen R2 to execute first, we would obtain the state: x = 0, y = 0, ctr = 1. At this point both

rules’ predicates are still true and we could choose either rule to execute next. Thus, rules do

not always execute if their guards are true and the behavior of the system can depend on the

order of rule execution. In general, although we do want this capability, we discourage a

design style in which behaviors vary depending on the order of rule execution. Most designs

that we discuss contain rules whose predicates can be simultaneously true. However, the final

state in these systems will be same regardless of rule execution order.

27

2.2 Guarded atomic action examples

This section presents two examples of using guarded atomic actions to describe hardware. The

first example computes the greatest common divisor (GCD) of two numbers. The second

example contains a portion of a simple processor design.

The following two rules compute the GCD of two numbers x and y using Euclid’s GCD

algorithm. The result of the computation is located in register x when y contains the value 0:

Rsub: when ((x >= y) & (y != 0)) =>
 x := x – y;

Rswap: when ((x < y) & (y != 0)) =>
 x, y := y, x;

Figure 2-2: GCD rules

An execution example for these rules, given initial values x = 15 and y = 6 is shown in

Figure 2-3. In this example the application order of rules is deterministic since the two rules’

predicates are mutually-exclusive (x cannot be both “less than” y and “greater than or equal” to

y). Hence, in each step the rule whose predicate is true is applied to the state of the system (x

and y).

Step # Rule x Y

0 Initial Values 15 6

1 Rsub 9 6

2 Rswap 3 6

3 Rsub 6 3

4 Rsub 3 3

5 Rswap 0 3

6 Done: Result = 3 3 0

Figure 2-3: GCD execution example

A key difference between these rules and traditional RTL (for example, Verilog) is that

both GCD rules modify the same state (x) without explicitly arbitrating for access to the

register. Instead, any compiler is required to ensure atomic execution of each rule when

generating hardware (or software) that implements these (or any other) rules.

28

Next we show how to design a simple two-stage processor using guarded atomic

actions. As shown in Figure 2-4, the processor contains the usual state elements: program

counter (pc) and register file (rf). It also contains a FIFO (bu) as the pipeline stage.

Figure 2-4: Two stage processor

Figure 2-5 shows the processor rules. They are divided into two groups: fetch and

decode rules (FD*) and execute rules (E*). The asynchronous (decoupled) and non-

deterministic nature of rule-based design is exhibited by the fact that the two stages (FD and E)

are completely decoupled, except for their interaction via the bu FIFO. So long as the FIFO is

not full and does not contain an instruction that writes to a register source of the instruction in

the FD stage, the FD rules can execute. Similarly, the E rules can execute whenever the bu

FIFO is non-empty. Hence, neither set of rules needs to interact directly with the other set of

rules. (Note: full / empty status is implied by the enq and deq FIFO method calls.)

It is also worth pointing out that unlike in the GCD example, the processor rules can

execute in many different (non-deterministic) orders, provided that the size of the bu FIFO is

greater than one. For example, two FD rules can execute in sequence, followed by the

execution of 2 E rules in sequence. Or, the FD and E rules could execute in alternating order.

At first this might appear to make the design process more difficult since the designer cannot be

certain in what order events will occur. However, in many cases[3, 52], the non-deterministic

scheduling makes it possible to prove properties about the design as well as refine the design

through design transformations. The decoupled nature of the descriptions and possibly non-

deterministic scheduling of rules also adds robustness to the design process since a change of

the scheduling in one part of the design by definition will not affect the functionality of the rest

of the design. A major contribution of this thesis is showing how to maintain this robustness

while allowing the designer to also specify desired performance characteristics to direct the

scheduling of rules.

CPU

bu

pc rf

fetch &
decode

execute

29

FDadd: when ((iMem[pc] == Add{rc, ra, rb}) &
 !bu.find(ra) & !bu.find(rb)) =>
 bu.enq(EAdd{rc, rf[ra], rf[rb]});
 pc := pc + 1;

FDbz: when ((iMem[pc] == Bz{rc, addr}) &
 !bu.find(rc) & !bu.find(addr)) =>
 bu.enq(EBz{rf[rc], rf[addr]});
 pc := pc + 1;

Eadd: when (bu.first() == EAdd{rc, va, vb}) =>
 rf[rc] := va + vb;
 bu.deq();

Ebztaken: when ((bu.first() == EBz{vc, va}) & (vc == 0)) =>
 pc := va;
 bu.clear();

Ebznotake: when ((bu.first() == EBz{vc, va}) & (vc != 0)) =>
 bu.deq();

Figure 2-5: Two stage processor rules

Similar to the GCD case we again have multiple rules that modify the same state (the

pc register, and bu FIFO). The designer does not need to worry about how accesses by

different rules interact since the execution semantics ensure that each rule is applied atomically

to the state of the system. We believe this is one of the major advantages of rule-based

synthesis since it allows the designer to ignore the details of this error-prone arbitration logic.

2.3 Why guarded atomic actions are useful

Before discussing efficient hardware generated from rule-based descriptions we should

summarize why we believe rule-based descriptions are an attractive model for hardware

generation. The key advantages are:

• The design style is asynchronous / decoupled. This makes designs robust with

respect to scheduling changes in other parts of the design. For example, rules

representing the processor pipeline stages could be written without regard to how

they interact with the simultaneous execution of rules in other pipeline stages.

• Designs need not specify the details of arbitration for access to shared state by

multiple rules. For example, the two stage processor rules FDadd and Ebztaken

30

both modify the PC. However, no explicit logic to arbitrate the access to this state

needed to be expressed.

• Guarded atomic actions have simple and well defined execution semantics. This

makes proving properties about a design and transforming the design possible.

2.4 Synthesis of guarded atomic actions

There is a straightforward translation from rules into hardware. Assuming all state is accessible

(no port contention), each rule’s π and δ expressions can be easily implemented as

combinational logic. As shown in Figure 2-6, a hardware scheduler and control circuit then

needs to be added so that in every cycle the scheduler dynamically picks one δ function whose

corresponding π condition is satisfied. An arbitration circuit then updates the state of the

system with the result of the selected δ function. In this circuit, the φ signals are used to

indicate which rule is active. Figure 2-7 shows the arbitration logic for each state element: it

takes as input the new state value from each δ function for each piece of state and selects the

next state value depending on which rule is active. (If a rule does not change a particular state,

then the next state value for that rule/state pair is not meaningful. Hence we would disable

state-updates for that rule/state pair.)

Figure 2-6: Synthesized guarded atomic actions

31

Figure 2-7: Simple state update arbitration

The cycle time in such a synthesis is determined by the slowest π and the slowest δ

functions. However, although correct, such an implementation has unsatisfactory throughput

because it executes only one rule per cycle. In the processor pipeline from Section 2.2 this

would be unacceptable since the designer would expect any reasonable implementation to

execute the two processor stages concurrently. Fortunately, it is often possible to execute

several rules simultaneously such that the result of the execution matches an execution in which

the selected rules are applied in some sequential order—as the semantics of rule execution

require. Thus, the challenge in generating efficient hardware from sets of atomic actions is to

generate a scheduler which in every cycle picks a maximal set of rules that can be executed

simultaneously. We should note that past work and this thesis assumes that each rule executes

within a single cycle but implementations where the execution of a rule may stretch over

multiple cycles might be an attractive area to investigate.

Both Staunstrup[51] and Hoe[27-29] improved on the above base-line implementation

by making the observation that two rules can execute simultaneously if they are “conflict free”

(CF), that is, they do not update the same state and neither updates the state accessed (i.e.,

“read”) by the other rule. An example of two CF rules is:

R1: when (True) =>
 x := x + 1;

R2: when (y < 7) =>
 y := y + 1;

Only the scheduler in the circuits of Figure 2-6 needs to change to support the simultaneous

execution of CF rules. Rather than select only one rule at a time (set one δ to true), the

ϕa ϕb ϕc

δa

δb

δc

new
state

CF Rules

32

scheduler can now select multiple rules (δ’s) to be true, provided that their corresponding

predicates (π’s) are true and that they are all mutually conflict free.

Arvind and Hoe further observed that two rules (R1 and R2) can execute simultaneously

if one rule (R2) does not read any of the state that the other rule (R1) writes. In this case

simultaneous execution of R1 and R2 appears the same as sequential execution of R1 followed by

R2. For this to hold R2 writes must take precedence over writes to the same state by R1 and the

execution of R1 must not disable R2. Such rules are called “sequentially composable” (SC)

in[12]. An example of two SC rules is shown below:

R1: when (True) =>
 x := y + 1;

R2: when (y < 7) =>
 y := y + 1;

Given these two rules and an initial state x = 0, y = 1, applying the rules in sequence R1

followed by R2 produces the values x = 2, y = 3. This is precisely the value we obtain if we

apply the above mentioned circuit generation technique.

Figure 2-8: Prioritized state update arbitration

To add SC to the circuit of Figure 2-6 we again need to update the scheduler to now

also enable sets of rules that are pair-wise (and in a consistent order) SC. The arbitration

circuits must now also give priority to rules depending on their SC relationship as shown in

Figure 2-8.

Hoe and Arvind showed how to generate a scheduler that selects a maximal subset of

applicable rules within each cycle. By using the CF and SC properties they ensured that the

outcome of a scheduling step could be explained as atomic firing of rules in some sequence.

Their synthesis system supported registers, FIFO’s and register files as primitive state elements.

ϕd ϕe ϕf

δf

δe

δd

new
state

SC Rules

33

It is important to note that this scheduling process is not user driven. A compiler is

automatically deciding which subset of rules is “best” to execute in each cycle. Since no clear

heuristic exists to choose the “best” subset, the approach used thus far has been to assign fixed

priorities to rules and to have these priorities help guide the compiler in choosing the most

appropriate rules to execute. In Chapter 5 we introduce a new scheduling algorithm that allows

for more parallelism than Hoe and Arvind were able to derive and also allows the designer to

more precisely specify what rules should execute in each cycle.

An important observation is that neither CF nor SC scheduling substantially changes

the cycle time of the base-line circuit implementation. The reason for this is that the only logic

changes between these implementations lies in the scheduler circuit and the state update

arbitration circuits. The scheduling circuit is generally small compared to the rest of the logic

and does not impact the cycle time unless the delay of the predicate computation (π) is

comparable to the delay of the update function computation (δ). The state update arbitration

logic does lie on the critical path. However, the CF style mux is required for even single-rule at

a time execution since regardless of whether rules execute simultaneously, the next state value

must be chosen from multiple possible sources. Thus, CF arbitration does not increase the

critical path of the design over a base-line single-rule at a time implementation. The SC

arbitration logic has a longer propagation delay than CF arbitration because the mux’s must be

staggered to implement a priority encoder—“later” rules must take precedence when updating

state. Usually, this additional delay has an impact on cycle time, but is small compared to the

computation in the π and stages δ stages. In most cases, prioritized access would have to be

arbitrated in a traditional RTL design style as well. Hence, SC circuits are often as efficient as

RTL implementations. (Note: the synthesis flow treats the scheduler and arbiter as a single

combinational block to allow optimizations across both blocks.)

Another important observation is that Hoe and Arvind’s synthesis algorithms do not

support the forwarding of values from one rule to another. This means that the values written

by one rule cannot be read by another rule within the same cycle. As we will see in Chapter 5,

this is a limitation that causes many designs to be scheduled with insufficient parallelism.

34

35

Chapter 3

The Modular Rule Language

This chapter introduces a modular rule-based language (MRL) and provides an execution

semantics that specifies the behaviors that any implementation of an MRL program must

adhere to. We use MRL as the specification language for examples throughout the remainder

of the thesis, and the goal of the synthesis algorithms that we introduce in later chapters is to

synthesize hardware descriptions written in this language efficiently.

The MRL language can be considered the core of the much richer Bluespec language[4,

8], similar to Hoe and Arvind’s ATS as the core of their TRS framework[27-29]. MRL adopts

Bluespec’s notion of a module which can contain local state elements, interface methods which

allow other modules access to its state, and rules which describe the module’s internal

behavior. The key difference between this framework and Hoe’s environment is that MRL

supports a user-defined module hierarchy whereas Hoe was limited to synthesizing rules that

interact with only a small set of primitive state elements. The difference between MRL and

Bluespec is that MRL contains only the constructs that make the scheduling and inter-module

communication part of Bluespec a challenge—the part that constitutes the core of the synthesis

algorithms. MRL does not contain Bluespec’s sophisticated type system, it does not support

local functions, does not contain loops, etc. In essence, MRL is an intermediate form of

Bluespec after all preprocessing and type checking has been performed, but before any

scheduling and module synthesis has begun.

36

One of the values of this chapter is that it introduces a language that we can use for

modular and performance driven synthesis in the following chapters. Another important

contribution is that it defines how a modular rule-based language should behave. Bluespec Inc.

had developed a modular language before we began this work, but neither a true modular

synthesis flow existed, nor were the semantics of the language clear. Given the importance of

the guarded atomic action execution model, expressing the semantics of a modular environment

is important if we are to use a modular language to describe large-scale designs based on

guarded atomic actions.

We begin the chapter by introducing MRL and the ideas behind it. We then explain the

execution semantics in two steps: (i) we show how to translate MRL descriptions into a flat

rule-based design (FRL) that closely matches the ATS framework in which Hoe and Arvind

worked, and (ii) we provide sequential execution semantics for the derived FRL program.

3.1 The Modular Rule Language (MRL)

At a high-level, each MRL program contains a module hierarchy in which each module

consists of (i) local state elements (module instances), (ii) local bindings (combinational logic),

(iii) interface methods which allow other modules’ rules or methods to access the module’s

internals, and (iv) rules, which define the module’s internal behavior. The behavior of any such

program can still be explained as a sequential execution of rules. However, rules may be

located in many modules and their behavior is expressed via calls to module interface methods

that provide access to modules’ internal state elements. This contrasts with traditional rule-

based descriptions in which all rules are located in a single module and rules interact with

primitive state elements only.

3.1.1 MRL abstract grammar

Figure 3-1 shows the grammar of the MRL language. The next subsections discuss each of the

language structures and their meaning. We use the following conventions in the grammar:

<E> ≡ 1 occurrence of entity of type E
{E} ≡ 0 or 1 occurrence of entity of type E
[E] ≡ 0 or more occurrences of entity of type E

37

Program ::=
 [Module Definition]
 [Module Instance]

Module Definition ::=
 module <Module Definition Name>
 [Module Instance]
 [Local Binding]
 [Read Method]
 [Action Method]
 [Rule]
 endmodule

Module Instance ::=
 <Module Definition Name> <Module Instance Name>

Local Binding ::= <Variable> = <Exp>

Read Method ::=
 method <Read Method Name> ([Variable]) =
 return <Exp>
 when <Exp>

Action Method ::=
 Method <Action Method Name> ([Variable]) =
 <Action>
 when <Exp>

Rule ::=
 rule <Rule Name>: when <Exp> =>
 <Action>

Exp ::=
 <Constant>
 | <Variable>
 | <Read Method Call>
 | <Exp> <Primitive Op> <Exp>
 | <Exp> ? <Exp> : <Exp>
 | (<Exp>) when <Exp>
 | <Local Binding> <Exp>

Primitive Op ::= + | - | & | …

Read Method Call ::=
 <Module Instance Name> . <Read Method Name> ([Exp])

Action ::=
 [Action]
 | <Action Method Call>
 | if <Exp> then <Action> else <Action>
 | <Action> when <Exp>
 | <Local Binding> <Action>

Action Method Call ::=
 <Module Instance Name> . <Action Method Name> ([Exp])

Figure 3-1: MRL grammar

38

Since the MRL grammar refers to an abstract syntax, it does not explicitly specify the

syntax to delineate groupings of actions, local bindings, etc. However, we assume that such

groupings are implied by the use of parentheses, braces, etc. in sample programs.

With regards to naming, the MRL language does not place restrictions on how design

elements (state elements, interfaces, etc.) can be named. However, we usually adhere to the

guidelines in Figure 3-2 when naming program components, especially when talking abstractly

about a program property rather than about a concrete example.

Module Instance Name ::= m1| m2 | … | top
Module Definition Name ::= mkFIFO | mkALU | mkGCD | …
Primitive Module Name ::= mkReg
Primitive Instance Name ::= r1 | r2 | ... // registers
Read Method Name ::= f1 | f2 | …
Action Method Name ::= g1 | g2 | …
Read or Action Method ::= h1 | h2 | …
Variable Name ::= t1 | t2 | …
Rule Name ::= R1 | R2 | …

Figure 3-2: MRL naming conventions

3.1.2 Rules

As the name implies, rules are the key concept behind rule-based descriptions. The structure of

a rule in MRL programs is identical to that used by Hoe and Arvind in their synthesis

framework: it is an atomic action (body) that is protected by a guard. We will also call a rule’s

guard its when condition or predicate. The key difference between rules in an MRL program

and rules in Hoe and Arvind’s framework is that the rule guard and rule body can now make

calls to the interface methods of arbitrary modules, not just primitive modules. As we will see,

compiling rules that make calls to user-defined methods poses new challenges when generating

efficient schedulers for the design.

3.1.3 Interface methods

User-defined interface methods are the key difference between modular rule-based (MRL)

programs and the rule-based flat programs that Hoe and Arvind considered. Interface methods

are the mechanism that allows rules and methods in different modules to communicate with

39

one another. As we will see in Chapter 4, scheduling and constraining the use of interface

methods so that atomicity of rule execution is ensured is an interesting and important problem.

We distinguish between two types of interface methods: read methods and action

methods. Read methods return a value (for example, the FIFO first method) and do not update

a module’s internal state. Action methods update a module’s state and do not return a value

(for example, the FIFO enq method). Since read methods return values, they are called from

within expressions (Exp). Action methods update state and hence are called inside a rule or

inside another action method’s body, but not from within read methods. We often refer to

action method calls simply as actions.

A very innovative feature that we have adopted from Bluespec, and which is not found

in other languages, is a method’s implicit condition. This condition determines whether or not

a method is allowed to be called. For example, the implicit condition of the FIFO enq method

is true only if the FIFO is not full. If the implicit condition is false (the FIFO is full), then the

method (enq) must not be invoked.

Since rules must execute atomically, either all its actions or none of them must execute.

Hence, if one of the rule’s actions has an implicit condition that is false, the rule cannot

execute. (We relax this restriction slightly in a later section when we consider an action block

that contains calls to action methods within an if statement.)

The syntactic structure of interface methods in MRL programs is very similar to the

rule syntax: each method contains a when condition (the implicit condition) and a body which

either performs a set of actions if it is an action method or returns a value if it is a read method.

One difference between methods and rules is that methods can accept input parameters.

3.1.4 Actions

Actions define the state update function of rules and action methods. The simplest action is a

register write: x := y. More complex actions can make calls to user-defined action methods,

for example a FIFO enqueue: f.enq(x). This notation says to call module instance f’s enq

method with input parameter x.

Actions can also consists of multiple method calls, for example: x := y; y := x; is an

action that contains two register writes and two register reads. We interpret groupings of

actions inside rules and methods the same way that Hoe and Arvind did: when multiple actions

40

appear within a rule or method, they must execute in parallel. This means that all state must be

read before any updates occur. In the above example this means that the values of x and y

should be swapped, rather than sequentially assigned. Because of their parallel interpretation,

we can arbitrarily reorder actions within a sequence of actions. Another implication of this

parallel interpretation is that two actions within a sequence must not write to the same state

since the outcome would not be well defined. We mark any program in which multiple updates

to the same state occur within a sequence of actions as invalid.

We allow two conditional constructs to appear within actions: if statements and when

clauses. We will examine the execution semantics of these two constructs in more detail in

Section 3.2.2. However, at a high level, these constructs conditionally prevent actions from

executing. The key distinction is that if a when condition evaluates to false then the entire rule

or action method must not be executed. In contrast, if an if statement’s predicate is false, then

the if statement’s body must not be executed, but this does not disable the entire rule from

executing.

3.1.5 Local bindings

Local bindings allow an expression to be assigned to a variable. Use of the variable name

inside another expression has the equivalent meaning of textually substituting the expression

that is bound to the variable. Hence, this construct is really a programming convenience but we

include it in our language because it will be helpful throughout the thesis when we write

programs and program transformations.

Local bindings can appear within modules, rules, methods, actions, etc. We assume

that conventional scoping rules apply to the variable names.

3.1.6 Module hierarchy

The MRL language syntax allows any module to call any other module’s interface methods.

However, we place restrictions on what types of module interactions are valid. The synthesis

algorithms in the following chapters also only apply to a subset of the valid module structures.

To better understand these restrictions we introduce two graph structures.

41

The restriction for a module hierarchy to be valid is that its method calls must not be

mutually recursive. This means if we construct a method call graph as follows, the graph must

be acyclic for the MRL program to be valid:

• Each interface method corresponds to a node in the graph.

• We draw an edge from node ma.h1 to mb.h2 if method ma.h1 makes a call to

method mb.h2.

The rationale for requiring this acyclic method call structure is that we must be able to

statically generate hardware for a MRL program. If methods were to make mutually recursive

calls (their method call graph forms a cycle), then dynamic elaboration would be required to

determine when the recursive calls end. None of our synthesis algorithms fit into a framework

in which a single method’s execution takes an indeterminate amount of time and resources.

Hence, we mark such MRL programs as invalid.

We introduce module call graphs to understand which MRL programs we can

efficiently synthesize. They are defined as follows:

• Each module instance in the MRL program corresponds to a node in the

module call graph.

• We draw an edge from node mi to mj if and only if module mi makes a call to an

interface method of module mj.

In general, our synthesis algorithms only apply to module call graphs that form a tree.

This means that each module instance’s interface methods can be called from one module only.

Many designs satisfy this restriction and those that do not can be transformed such that their

new module call graph does form a tree. Hence, all valid MRL programs will be synthesizable.

Unless we indicate otherwise, it should be assumed that the algorithms we present in this thesis

only apply to module call graphs that form trees.

Since at some point we have to instantiate real hardware (for example registers), all

designs must contain primitive state elements at the leaves of their call graphs. As in Hoe and

Arvind’s research, we assume that primitive elements are well understood and that we know

how to generate the logic that interfaces to them and that schedules them. Most of this thesis

assumes that there is only one primitive state element: registers in the early chapters, and a

derived element, the EHR in later chapters. We will show how most other elements, including

elements that were previously considered primitive, such as a FIFO, can be built from the

primitive register without sacrificing performance.

42

3.1.7 Syntactic sugar

The MRL language contains several syntactic constructs which are not required to explain the

semantics of a modular rule-based language. However, we include these constructs because

they will be convenient to use in later chapters. One such construct is “if then else”. This can

be desugared as shown below. We are simply splitting the then and else part of an if statement.

For readability we will continue to use “if then else” in our examples, but only include “if

then” statements in our language transformations:

if <Exp> then
 Actions asT
else
 Actions asF

⇔

if <Exp> then
 Actions asT;
if (!<Exp>) then
 Actions asF

Since register reads and writes occur frequently in example programs we allow for

special abbreviated syntax for register access: a register name in an expression implies a call to

its read method. The := operator is equivalent to invoking the left-hand-side’s write method

with the right hand side’s expression as its input argument. Hence, the following translations

can be applied at all times (in either direction):

r := e ⇔ r.write(e)
The Exp: r ⇔ r.read()

Finally, it turns out that implicit conditions are also a form of syntactic sugar. We will

explain this in detail in Section 3.2.2 (When lifting). However, the pairing of methods with

conditions is such a convenient construct that we will continue to use it in our semantic

discussion.

3.1.8 MRL vs. Bluespec and ATS

The reader will note that the modular rule-based language Bluespec[4] is a much richer

language than MRL. The key difference is that Bluespec contains a sophisticated type system

and an advanced pre-processor. MRL can be thought of as an intermediate language of

Bluespec that contains all structural and interesting rule properties, but from which types have

43

been stripped away and in which the pre-processor has inlined functions, substituted compile-

time parameters, etc. The contribution of this chapter is not the language itself, but rather in

articulating the execution semantics that such a modular rule-based language must adhere to.

In the context of modules, Bluespec had introduced modules in an object-oriented

framework before we began this research. However it took some time to fully understand what

the semantics of such a modular rule-based language should be. Fully understanding and

specifying the semantics allowed us to create an efficient modular compilation flow which we

present in the next chapter.

An example of a powerful and important Bluespec feature that we do not include in

MRL is the ability to parameterize modules. Bluespec modules can be passed values, logic, or

even other modules when they are instantiated. This allows for sophisticated libraries to be

created. For example, a FIFO can be parameterized on the number of elements it contains, or

what function should be applied to each element of the FIFO when performing a search on its

elements. Our language does not include module parameters. Although very powerful and

useful when designing hardware, they do not change the semantics or compilation of a modular

rule-based description. We can treat all of these constructs as strictly a pre-processing step

which results in a MRL description.

We can also contrast MRL with the framework in which Hoe and Arvind worked. The

key difference is that Hoe and Arvind allowed rules to only interact with primitive state-

elements (registers, register files, and FIFO’s). In contrast, MRL allows a designer to create

new modules and enables rules to interact with the modules through interface methods. Such

modular design is critical for large-scale hardware design and as we will see poses some

interesting challenges.

3.2 MRL to FRL translation

Now that we have a basic understand of the MRL language we can focus on the technical

contribution of this chapter, which is to explain the precise meaning of a MRL program. We

specify its meaning by providing a syntactic translation from MRL to FRL, where FRL is a flat

rule-based language, equivalent to Hoe and Arvind’s ATS framework. For completeness we

also present a formal interpretation of FRL programs. The motivation for this two-step process

rather than a direct interpretation of MRL is that we already understand FRL as a base-line

44

model for guarded atomic actions. From Hoe and Arvind’s research we also understand how to

generate hardware from FRL style algorithms. Thus, we think the reference model for a

modular rule-based description (MRL programs) is best described via a flattened design (FRL

programs).

Program ::=
[Primitive Module Instance]

 <Module Definition>

Module Definition ::=

module <Module Definition Name>
 [Local Binding]
 [Rule]

Primitive Module Instance ::=

<Primitive Module Name> <Primitive Instance Name>

Local Binding ::=
 <Variable> = <Exp>

Rule ::=

rule <Rule Name>: when <Exp> =>
 <Action>

Exp ::=

<Constant>
 | <Read Method Call>
 | <Exp> <Primitive Op> <Exp>
 | <Exp> ? <Exp> : <Exp>
 | [Local Binding] <Exp>

Primitive Op ::=

+ | - | & | …

Read Method Call ::=

<Primitive Instance Name> . <Read Method Name> ([Exp])

Action ::=
 [Action]
 | <Action Method Call>
 | if <Exp> then <Action>
 | <Local Binding> <Action>

Action Method Call ::=

<Primitive Module Name> . <Action Method Name> ([Exp])

Figure 3-3: FRL grammar

45

A grammar for the FRL language is provided in Figure 3-3. It is a subset of MRL

where the key difference is that FRL programs do not contain a module hierarchy. All MRL

module instances must be primitive state elements, and hence all method calls can be to

primitive state elements only. (Using Hoe and Arvind’s framework, we can assume that it is

understood how to compile a set of rules that interact with primitive elements only.) To make

FRL equivalent to Hoe and Arvind’s synthesis language, we also require that when clauses only

appear in the predicate of each rule, not in the rule body as was possible in MRL.

The translation of a MRL program into FRL occurs in two steps: (i) flatten the design

through repeated merging of module instances until only a single top level module remains and

all method calls are to primitive state elements, and (ii) lift conditional when clauses to enforce

the atomic rule property (the when clauses appear during the merging process). We describe

both of these steps in the next subsections.

3.2.1 Flattening

They key to the translation of MRL into FRL is the removal of the module hierarchy. We

accomplish this flattening process via repeated merges of MRL modules until only a single top-

level module remains. This top level module by definition will make calls to primitive state

elements only.

The MODMERGE procedure in Figure 3-4 merges two arbitrary (non-primitive) MRL

module instances m1 and m2. The procedure produces a new module mmerged which behaves the

same as the two original modules m1 and m2. Merging takes place in four steps. First we create

mmerged by adding all state, rules, local bindings, and methods of m1 and m2 in the new module.

Since m1 and m2 will be removed after merging we then have to remove all references to their

methods. References from modules other than mmerged can simply be redirected to call the

corresponding method of mmerged rather than m1 or m2. However, if mmerged makes a call to

either m1 or m2’s methods, then we must inline the corresponding method since we do not

permit a module to call its own methods. As shown in Figure 3-5 we use a conventional

interpretation of inlining: we bind the method parameters with the values used in the method

call and inline the entire method body, including the implicit condition (as a when clause). The

final step in the merging process is to remove the original modules m1 and m2.

46

We assume that there are no naming conflicts between m1’s and m2’s methods (if there

were, we would have to add a renaming step). As described in Section 3.1.6 we also assume

that interface methods do not make mutually recursive calls as the inlining procedure would

otherwise not be well-defined.

Now that we understand how to merge two modules, we can flatten an entire design

through repeated merging of modules. This process is shown in Figure 3-6.

 MODMERGE(m1, m2) =
 1. Define a new module mmerged such that // union of:
 mmerged.state = m1.state ∪ m2.state; // local instances
 mmerged.rules = m1.rules ∪ m2.rules; // rules
 mmerged.lb = m1.lb ∪ m2.lb; // local bindings
 mmerged.meth = m1.meth ∪ m2.meth; // interfaces

 2. Substitute module name mmerged for all uses of module
 names m1 and m2 in other modules

 3. foreach method call mi.h in mmerged where mi ∈ {m1, m2}
 inline the method call mi.h

 4. Remove modules m1 and m2

Figure 3-4: The MODMERGE procedure

 Suppose we are given read method m.f(x) and an action method
 m.g(x):
 m.f(x) = ef when (ep);
 m.g(x) = a when (ep);

 To inline these methods means to replace calls (m.f(ex) and
 m.g(ex)) as follows:
 m.f(ex) ≡ ef[ex / x] when (ep[ex / x]);
 m.g(ex) ≡ a[ex / x] when (ep[ex / x]);

 An alternate inlining:
 m.f(ex) ≡ x = ex; ef when ep;
 m.g(ex) ≡ x = ex; a when ep;

Figure 3-5: Inlining

 FLATTEN =
 1. while (the design contains more than one module)
 a. pick two module instances m1 and m2
 b. ModMerge(m1, m2)

Figure 3-6: The FLATTEN procedure

47

To better understand module merging consider the example in Figure 3-7. In this

example we show how two modules (Proc and Ctr) are merged into a single module. During

the merging process the CReg register is inserted into the merged module, the methods (with

parameters) are inlined into the rules R1 and R2, and the original modules Proc and Ctr are

removed. In the next section we discuss what it means to have when clauses inside a rule (as

the new R1 and R2 rules have). We will also show how the when clauses can be lifted to the

rule predicate. (Note: p1, p2, and p3 are placeholders for boolean expressions. a1 and a2 are

placeholders for actions.)

 module Proc
 Ctr c;

 rule R1: when (p1) =>
 a1;
 c.Inc(1);

 rule R2: when (p2) =>
 a2;
 if (p3) then c.Dec(2);
 endmodule

module Ctr
 reg CReg;

 method Inc(x) =
 CReg := CReg + x;
 when (CReg < 127);

 method Dec(x) =
 CReg := CReg – x;
 when (CReg > 0);
 endmodule

 module Proc_Ctrmerged
 reg CReg;

 rule R1: when (p1) =>
 a1;
 ((CReg := CReg + 1) when (CReg < 127));

 rule R2: when (p2) =>
 a2;
 if (p3) then ((CReg := CReg – 2) when (CReg > 0));
 endmodule

Figure 3-7: Proc / Ctr module merge

Proc_Ctrmerged

R1

CReg

Inc

R2 Dec

⇒

Proc

R2

Ctr In
c

D
ec

CReg R1

48

A couple important properties of the FLATTEN procedure are worth pointing out: the

procedure terminates for all valid programs and the procedure produces a unique top-level

result, regardless of the order that MODMERGE is applied to the modules in a design.

Termination is obvious since each call to MODMERGE inside FLATTEN adds one module and

removes two—reducing the total number of modules by one. Hence, eventually we must be

left with just a single top level module and all method calls in this top level module must be to

primitive state elements. If there was a call to a non-primitive module then we could apply the

MODMERGE procedure again. Notice, all steps except for inlining within step 3 of the

MODMERGE procedure take finite time. Step 3 terminates as long as the method calls of m1 and

m2 do not form a cycle.

3.2.2 When lifting

After a design has been flattened via the FLATTEN procedure we are left with a single top-level

module which nearly satisfies the FRL grammar. To make the module a FRL description we

need to lift the when clauses that appear in rule bodies up to their corresponding predicates.

These when clauses appear inside expressions and actions of rule bodies due to the implicit

conditions that were inlined during the FLATTEN procedure. An example where this happens

was shown in Figure 3-7.

The reader should recall that the intent of implicit conditions is to prevent a method

from being called if the condition is false. In addition, so as to ensure atomicity, if one of a

rule’s methods cannot be called because its implicit condition is false, then none of the rule’s

methods should be called.

One procedure to lift when clauses is to remove all when’s from the rule body and

conjugate them with the rule predicate. This would satisfy the condition that the rule does not

execute unless all the implicit conditions of the methods that were called are true. However, it

is more constraining than required. This becomes clear if, as shown in Figure 3-8, we lift the

when clauses from the Proc / Ctr example in this manner. By lifting the “(CReg > 0)”

expression (which originated from the Dec implicit condition) into R2’s predicate, we prevent

the rule from executing whenever CReg is 0. However, the Dec method of the original Ctr

module would only have been invoked if p3 was true. Thus, if p3 is false, it is alright to execute

rule R2 regardless of what the state of CReg is. We show the new R2 rule that implements this

49

style of when lifting in Figure 3-9. (Note: rule R1 is the same regardless of whether the simple

or conditional when lifting procedure is applied since it does not contain conditionals.)

 module Proc_Ctrmerged
 reg CReg;

 rule R1: when (p1 & (CReg < 127)) =>
 a1;
 (CReg := CReg + 1);

 rule R2: when (p2 & (CReg > 0)) =>
 a2;
 if (p3) then (CReg := CReg – 2);
 endmodule

Figure 3-8: Simple when lifting

 rule R2: when (p2 & ((!p3) | (CReg > 0)) =>
 a2;
 if (p3) then (CReg := CReg – 2);

Figure 3-9: Conditional when lifting

It is important to recognize that we made a choice in how when conditions should be

lifted. Either approach works and implies slightly different semantics since the allowable

behaviors are different in the two cases. Although slightly more complex, we choose the

second approach because in some cases it leads to better performance by allowing rules to

execute when method calls whose implicit conditions are false are located inside if statements

whose condition is also false.

For completeness, we show a full when lifting procedure in Figure 3-10. We write this

procedure as a source to source transformation. Any code that matches a description on the left

hand side of these rewrite rules should be transformed into the corresponding code on the right

hand side of the transformation. In these transformations ei refers to expressions, ai refers to

actions, pi refers to expressions in a when clause, and R is a rule. The previously described case

lifting of when’s across conditionals is marked as “SPECIAL CASE” in the procedure.

After no more of the when lifting transformations can be applied we are left with rules

that contain only a single when clause—the rule predicate. At this point we have transformed a

50

modular rule-based description (MRL programs) into a corresponding flat description that can

be simulated or synthesized using the basic model of guarded atomic action.

/*** when’s are lifted across expressions ***/
(e1 when p1) when p2 => e1 when (p1 ∧ p2)
(e1 when p) <Primitive Op> e2 => (e1 <Primitive Op> e2) when p
e1 <Primitive Op> (e2 when p) => (e1 <Primitive Op> e2) when p
(e1 when p) ? e2 : e3 => (e1 ? e2 : e3) when p

/*** Conditionals of parameters are lifted. These ***/
/*** method calls must be to primitive modules since ***/
/*** flattening / inlining occurs before when lifting ***/
a(…, e when p, …) => a(…, e, …) when p
e1(…, e2 when p, …) => e1(…, e2, …) when p

/*** Conditionals are lifted across actions ***/
if (e when p) then a => (if e then a) when p
a1; (a2 when p) => (a1; a2) when p
(a when p1) when p2 => a when (p1 ∧ p2)

/*** SPECIAL CASE ***/
if e then (a when p) => (if e then a) when (p ∨ ~e)
e1 ? (e2 when p) : e3 => (e1 ? e2 : e3) when (p ∨ ~e1)
e1 ? e2 :(e3 when p) => (e1 ? e2 : e3) when (p ∨ e1)

/*** lifting conditionals to the rule predicate ***/
rule r: when p1 => (a when p2) => rule r: when (p1 ∧ p2) => a

/*** remove when conditions from temporary bindings ***/
t = et when p; e => t = et; e[(t when p) / t]
t = et when p; a => t = et; a[(t when p) / t]
t = et when p; R => t = et; R[(t when p) / t]

Figure 3-10: When lifting transformations

As an aside, it should now be clear that implicit conditions turn out to be syntactic

sugar. We could split each method into two methods: its body and a read method

corresponding to its implicit condition. For example, if we have method m.h, we could split it

into m.h_body and m.h_cond. m.h_body performs the action when called (or returns a value if

m.h is a read method). m.h_cond is a read method that returns the value that the implicit

condition of m.h would have computed. (Note: neither m.h_body nor m.h_cond has an implicit

condition.) We can then replace all calls to m.h with “m.h_body when m.h_cond”. By the

above definitions, this has precisely the same meaning.

51

3.3 FRL execution semantics

We now present a precise meaning of FRL programs. This section should be read as an aside

and the details are not important to understanding the remainder of the thesis since the high-

level idea of sequential and atomic execution of rules applies to FRL programs. However, we

have developed a simple operational evaluation function for FRL programs and present it here

to complete the picture of what it means for an MRL program to execute.

In our execution model we utilize tables to maintain state (S), state updates (U), and

temporary values (T). For completeness, we present a definition of a table below. Here, A and

B are place holders for any of the tables S, T, and U. These tables can be thought of as lists of

assignments (pairs <r, v>) in which later assignments (the right hand side of a “+”) to an entry r

take precedence over earlier assignments (the left hand side of the “+”).

Table definition:

A[r] = v if <r, v> ∈ A
 ⊥ otherwise

(A + B)[r] = vb if <r, vb> ∈ B
 va if <r, *> ∉ B and <r, va> ∈ A
 ⊥ otherwise

We show an interpretation of FRL programs in two steps. First we explain what it

means for a rule to execute. We then show what it means for rules to execute in sequence.

3.3.1 Rule execution

Each FRL program can be divided into two sections: a local bindings section (LB), and a rules

section. Each binding in LB takes the form: t = Exp; and each rule takes the form:

rule Ri: when (πi) => aRi. Hence, we refer to rule Ri’s predicate by πi and its action by aRi.

Given these definitions we can write the following program to define the meaning of “execute

rule Ri”. This program evaluates the local bindings, not all of which the rule has to use, and

then executes the rule’s actions (aRi), provided the predicate (πi) is true:

LB;
if πi then ai;

52

The exact meaning of this program can be explained via an operational evaluation

function (ERule). This function takes as input the above program and the current state of the

system (S). It returns the new state of the system after the program has executed. ERule can be

best explained in two steps: (i) it computes a list of state updates (U), and (ii) it applies those

updates to the states (S + U). The motivation for splitting the evaluation into two phases is that

we interpret read’s to happen before write’s take effect, even if the read appears later in the

program. By accumulating all state updates (write’s) before applying them, we can ensure that

reads do not observe effects they should not see during sequential execution.

ERule computes the list of state updates using another operational evaluation function

(Ea). Ea accepts as input a program, the current state (S), as well as a table of temporary

assignments (T)—initially empty. The intent of the table of temporary assignments is that it is

valid only during a single execution. When another rule is evaluated, the temporary values are

recomputed. In contrast, the state S must persist from one execution to another since it

represents register state. Hence, the updated state will pass from one execution to the next.

ERule signature: Program -> State table -> New state table

ERule〚LB; if πi then ai;〛S =

let U = Ea〚LB; if πi then ai〛S ∅ in
 S + U

Below we present the definition of Ea. This definition is a sequential interpretation of

the input program to the function. Two of the reductions in Ea stand out: “t = e; a” and

“r := e; a”. The first case assigns an expression (e) to a temporary (t) and then evaluates the

action. This is expressed by adding (using the symbol “+”) the pair consisting of t and the

evaluation of e to the environment T. We then evaluate the action using the updated

environment. The second case corresponds to a register assignment (r := e), followed by an

action (a). As mentioned, we must not immediately update the state S to reflect the change in

register value since a later action within the same rule should not observe the change. Thus, we

add the assignment to the list of updates that must be performed when Ea finishes evaluating

the entire program. (Note: this evaluation function requires that temporary variable definitions

(local bindings) occur before their use. If an input program does not satisfy this condition, then

it can be transformed to satisfy the condition by performing a topological sort on the variable

uses / definitions—provided of course a definition for each variable that is used exists.)

53

Ea signature:
 Action -> State table -> Temps table -> State update table

Ea〚∅〛S T = ∅
Ea〚t = et; a〛S T = Ea〚a〛S (T + <t,(Ee〚et〛S T)>)
Ea〚(if e then a1); a2〛S T = Ea〚(if (Ee〚e〛S T) then a1);
 a2〛S T
Ea〚(if true then a1); a2〛 S T = Ea〚a1; a2〛S T
Ea〚(if false then a1); a2〛S T = Ea〚a2〛S T
Ea〚r := e; a〛S T = <r, (Ee〚e〛S T)> + (Ea〚a〛S T)

Note: any of the actions in the above functions can be empty.

an additional rule propagates undefined values (⊥):

Ea〚(if ⊥ then a1); a2〛S T = ⊥

Next, we define the evaluation function for expressions, Ee. It takes as input an

expression, the current state S, and the table of temporary assignments T. It returns the value of

the expression (or ⊥ if an error occurrs).

Ee signature:
 Expression -> State table -> Temps table -> value

Ee〚c〛S T = c
Ee〚r.read()〛S T = S[r]
Ee〚t〛S T = T[t]
Ee〚e1 op e2〛S T = op((Ee〚e1〛S T), (Ee〚e2〛S T))
Ee〚e1 ? e2 : e3〛S T = Ee〚(Ee〚e1〛S T) ? e2 : e3〛S T
Ee〚true ? e2 : e3〛S T = Ee〚e2〛S T
Ee〚false ? e2 : e3〛S T = Ee〚e3〛S T
Ee〚t = et; e〛S T = Ee〚e〛S (T + <t,(Ee〚et〛S T)>)

Note: S[r] always returns a value since register values
persist.

T[t] returns ⊥ if t has not been bound inside T—this is an
error condition.

Additional rules to propagate ⊥ are listed below:

Ee〚e1 op ⊥〛S T = ⊥
Ee〚⊥ op e2〛S T = ⊥
Ee〚⊥ ? e2 : e3〛S T = ⊥

54

Thus, we have presented a precise description of what it means to execute a rule. Next

we can define what it means to execute rules in sequence.

3.3.2 Sequential execution of rules

The key property of rule execution is that rules must appear to execute in sequence. We can

now specify what it means to execute rules in sequence. Suppose we are given an initial state

S, local bindings LB, and rules R1 and R2. Sequential execution of these rules, denoted by

R1 $ R2 is defined as follows. It takes the initial state of the system (S) and returns the next

state.

R1 $ R2 ≡ let S’ = ERule〚LB; R1〛S in
 ERule〚LB; R3〛S’

Given a system of n rules (R1, …, Rn) we can then construct a program that repeatedly

performs round robin scheduling of the rules:

while (true) do
 S := R1 $ … $ Rn;

We can also describe a scheduler which in each iteration selects one rule whose

predicate is true and then executes that rule. This closely resembles the baseline circuit that we

describe in Chapter 2:

while (true) do
 // compute rule predicates
 tπ1 := Ee〚LB; π1〛;
 …
 tπn := Ee〚LB; πn〛;

 // use a scheduler to compute pi’s
 {φ1, …, φn} := BaselineSchedule(π1, …, πn)

 // execute the rule whose φ is true
 if (φ1) then S := ERule〚LB; R1〛S
 …
 if (φn) then S := ERule〚LB; R1〛S

55

3.4 Chapter summary

The key contributions in this chapter are the introduction of a modular rule-based language

(MRL) and a specification for how such a language should behave. We explain its behavior via

a flattening procedure which eliminates the module hierarchy. This results in a set of rules

which after when lifting are equivalent to the conventional framework of guarded atomic

actions. Finally, we presented an operational evaluation function that shows precisely what it

means for rules to execute in sequences. In summary, we have defined how modular rule-

based descriptions should execute. This will serve as the reference model when we perform

true modular compilation in the next chapter.

56

57

Chapter 4

Modular Compilation

A modular synthesis flow is essential for a scalable and hierarchical design methodology.

Modularity is important because it enables the exchange of reusable IP, because it facilitates

verification, and because modular compilation can significantly improve synthesis times. The

previous chapter presented a modular language for guarded atomic actions (MRL). However,

we have only shown how this language can be translated into a flat language (FRL), which in

turn could be synthesized into hardware using Hoe and Arvind’s synthesis algorithms. This

chapter presents a true modular compilation algorithm that generates circuits without first

flattening the design[47]. An important requirement is that the modular circuits will continue

to match the semantics of the flattened modular description. The key contributions are (i) we

introduce a set of scheduling annotations for module interface methods that constrain their use;

(ii) we show how rules and interface methods can be scheduled given the scheduling

constraints of the methods they call; (iii) we show how a module’s scheduling annotations can

be derived, provided that the scheduling annotations for all modules the module communicates

with are known; and (iv) we show how to generate the glue logic that connects modules to one

another. As we will see, it is not possible to guarantee atomic execution of rules without these

scheduling annotations.

Although the constraints pose a challenge during synthesis, we show that they

significantly improve on the traditional style of informal module interface specification and

58

use. Because the scheduling annotations represent formal specifications on how interfaces can

be used, they facilitate the exchange of reusable IP, encourage a “correct by construction”

design methodology, and allow for easier architectural exploration by allowing modules to be

swapped in and out of a design without requiring the connecting modules to change. We view

these aspects as crucial components to improve the hardware design process.

Even though we now view the above aspects as the most important contribution of the

modular compilation flow, the initial motivation for introducing modular compilation grew out

of a more immediate practical need that arose as we were designing a processor using an early

version of Bluespec. We had written a highly-parameterized FIFO with a recursive search

function that was used to generate values for the processor bypass network. This description

was more parameterized than would be required for a specific processor implementation but

our expectation still was that with proper synthesis algorithms the final circuit would be

equivalent to a hand-coded RTL implementation. If successful, this highly parameterized FIFO

could be used across many different designs. Unfortunately, after flattening, synthesis time for

the processor was excessive and scheduling results were unsatisfactory—only alternating

processor stages executed concurrently because the FIFO did not permit simultaneous enqueue

and dequeue operations. Both of these issues are addressed in the modular flow because

modules can now be compiled separately (thereby dramatically improving the compile times),

and we allow for user-prescribed interface scheduling which the user can take advantage of

when he has some high-level knowledge that the compiler is not able to derive. Chapter 4

improves on this idea of user-prescribed interface scheduling by allowing the designer to

specify arbitrary performance constraints on module interfaces without risking that the

underlying semantics are altered.

To frame the context of this work, we should note that Bluespec was an object oriented

and modular language before we began this research. The language had the power to express

FIFO’s, arrays and many other hardware building-blocks as user defined modules using only

registers. However, similar to the process described in the previous chapter, the compilation

flow flattened the design until only rules that interacted with primitive elements remained. Hoe

and Arvind’s[27-29] analysis and synthesis algorithms were then applied to generate RTL

Verilog. However, as mentioned, this flow led to excessive compile times for larger designs,

suffered from scheduling (throughput) problems, and did not present an abstraction for the

reuse of precompiled IP. Thus, we take advantage of the language features developed in

Bluespec, but the synthesis algorithms and interface constraints are the result of our work.

59

The next section presents an example that illustrates the challenges of modular rule-

based compilation. We then introduce the module interface annotations and describe the

modular compilation algorithm. The end of the chapter presents results and discusses possible

improvements to the modular synthesis flow.

4.1 The goal of modular compilation

This chapter considers a modular flow in which each module has interface methods and the

internal behavior of the module is described in terms of a set of guarded atomic actions on the

state elements of the module. A module can also read and update the state of other modules,

but only by invoking the interface methods of those modules. This is illustrated in Figure 4-1.

The goal in modular compilation is to compile each of these modules individually while

ensuring that the sequential and atomic execution of rules is maintained across module

boundaries. In addition, a compilation algorithm that permits the maximal amount of

concurrent rule execution is desirable.

For example, given the design in Figure 4-1, a modular flow would first compile

modules “2” and “3” individually—generating a circuit description for each of these modules,

along with some minimal information (what we call scheduling annotations) that allows other

modules to connect to them. The annotations of modules “2” and “3” tell us how rules can be

scheduled inside module “1” as well as how to generate the glue logic that connects module “1”

to modules “2” and “3”. In order to maintain a level of abstraction, the scheduling annotations

will export only a small amount of information about the module’s internals.

Figure 4-1: A modular design

IF
g1

IF
g2

RuleIF
g1

IF
g2

Rule

State
Update

1 2

3

60

As a concrete example we show the code for a two-element FIFO in Figure 4-2. The

FIFO contains four registers—two to hold the data in each of the two FIFO elements, and two

full registers to indicate whether the data registers hold valid data. We consider the “0”

registers to be the part of the first FIFO element, and the “1” registers to be part of the second

FIFO element. We always fill the first element before filling the second element. Hence, the

FIFO will never have register full1 set to true while full0 is false. This FIFO contains the

standard interface methods (enqueue—enq, dequeue—deq, clear, and first). In the next chapter

we also show how to introduce bypasses.

module FIFO
 // local state definition
 mkReg data0; // contents of FIFO element 0
 mkReg data1; // contents of FIFO element 1
 mkReg full0; // 1 if FIFO element 0 contains valid
 // data, 0 otherwise
 mkReg full1; // 1 if FIFO element 1 contains valid
 // data, 0 otherwise

 // interface specification
 method enq(x) =
 data1 := x; // can always write to data1
 full1 := full0;
 if (full0 == 0) then
 data0 := x; // only write to data0 if FIFO was empty
 full0 := 1; // contains at least one element after enq
 when (full1 == 0); // to enq, FIFO must no be full

 method deq =
 full1 := 0;
 full0 := full1;
 data0 := data1;
 when (full0 == 1); // to deq, FIFO must not be empty

 method clear =
 full1 := 0;
 full0 := 0;
 when (true); // can be called anytime

 method first =
 return data0; // return the first FIFO element
 when (full0 == 1); // FIFO must contain valid data

endmodule

Figure 4-2: 2-Element FIFO

61

We will use this code as a running example throughout the remainder of the thesis.

Although it is a simple module, it contains many of the properties that make modular rule-

based descriptions interesting, but also challenging.

In a modular compilation flow we compile the FIFO on its own, that is, separate from

any other module. The result is a FIFO circuit description (RTL) along with a set of FIFO

interface scheduling annotations. Rather than being produced by the designer, the RTL code

and scheduling annotations could also have been provided as part of a reusable IP library that

includes a precompiled FIFO module. The modular flow we present in this chapter answers

two important questions about such a module: (i) how to connect to it, that is, what is the

wiring protocol, and (ii) what are the constraints for using the methods. We outline these ideas

for the FIFO module in the next paragraphs and provide a complete compilation flow in the

following sections. The underlying semantic constraint in this work is that atomicity must be

preserved across module boundaries—that is, the modular flow must exhibit behaviors that are

permissible in the flat equivalent.

4.1.1 FIFO interface wiring

We expect the circuit that results from compiling the FIFO to have an interface as shown in

Figure 4-3. The signals in this description have the following meanings, where h is a method

name:

h_rdy: an output signal corresponding to the implicit condition of the method

h_en: an input signal that indicates the method should execute

h_data: the parameters that are passed / returned during the method call

(note: this signal is usually a bus)

Figure 4-3: FIFO interface

FIFO
enq deq first

en
q_

rd
y

en
q_

en

en
q_

da
ta

de
q_

rd
y

de
q_

en

fir
st

_r
dy

fir
st

_d
at

a

62

Only action methods, that is, methods that update state have an h_en signal. Read

methods do not require an enable signal because it is safe for read methods to always return a

value, even if the result is not used. All modules we generate will have this style interface

wiring since it incorporates a simple protocol that communicates the critical method call

signals: data (input / output), enable (the method is being called) and ready (the method can be

called).

Let us now examine how these signals would be used from an instantiating module.

Figure 4-4 shows two rules that interact with the FIFO from within the module Top. Clearly,

rule R0 must only execute if the FIFO is not full. Thus, the enq method’s implicit condition

signal (enq_rdy) must become part of rule R0’s predicate. Also, whenever rule R0 executes, the

enq_en signal must be asserted and the value 5 must be passed on the enq_data bus. Similar

connections must occur for rule R1.

module Top

 mkFIFO f0;

 rule R0: when (true) =>
 f0.enq(5);

 rule R1: when (true) =>
 f0.deq();

endmodule

Figure 4-4: Simple use of FIFO module

4.1.2 FIFO interface scheduling

In the above example, we demonstrated the basics of connecting the two rules R0 and R1 to the

FIFO f0. Assuming that the FIFO circuit is generated correctly, it is reasonable to assume that

each of these two rules executes atomically and matches its flat equivalent if only one rule

executes at a time. However, given that one of the synthesis goals is to maximize concurrent

rule firings, we must ask: is it permissible to execute both of these rules simultaneously? The

answer clearly depends on the FIFO implementation. As shown in Figure 4-5, the interaction

of the two rules depends on the interaction of the enqueue and dequeue methods. Depending

on how the methods read and update shared state, the resulting behavior may or may not be

explainable as sequential execution of the two rules.

63

Figure 4-5: FIFO method overlap

If we assume that reads occur at the beginning of the cycle and writes occur at the end

of the cycle, then 8 implementations are possible (23 = 8—since preferences for each write to

data0, full0, and full1 can be given to either enqueue or dequeue). The implementations

distinguish themselves based on which of the two methods takes precedence when both attempt

to write to the same state. So long as only one rule executes at a time, it does not matter which

implementation is chosen. However, the implementation choice can have important

consequences when both rules simultaneously interact with the FIFO.

We can clarify this via an execution example. Given an initial FIFO state, depending

on the FIFO implementation we could obtain the following results after enabling both rules

(and corresponding wires connecting to the FIFO). (Note: “x” means don’t care, and the

values of datai do not matter if the corresponding full value is 0.)

 Circuit full0 data0 full1 data1

Initial state 1 3 0 x

Outcome A enq writes take precedence over deq writes 1 5 0 x

Outcome B mixed precedence on writes to full and data 0 3 0 5

Outcome A arises if all writes by the enqueue method take precedence over the writes

of the dequeue method. The resulting behavior can be explained as the execution of R1

followed by R0 (or also rule R0 followed by R1). However, outcome B is not consistent with

the atomic execution of the two rules in either order, and hence is not a permissible execution.

Such an outcome would arise if the FIFO circuit gives precedence of writes to the full registers

to the deq method and gives the enq method precedence on writes to the data registers. (Note:

by coincidence, outcome B is equivalent to executing R1 followed by two executions of R0 but

Top

R2

FIFO en
q

d
eq

data0

R1 data1

full0

full1

?

64

we were only considering the execution of two rules in this case.) Thus, depending on the

FIFO implementation, rules R0 and R1 may or may not be able to execute simultaneously.

In a traditional RTL design flow it is the designer’s responsibility to ensure that such

module restrictions are observed. When using precompiled IP, or when interfacing to another

designers block, the designer must read through manuals searching for this type of information.

If a mistake is made, a hard to debug error will often arise. In the flow we introduce next, these

interface properties are captured by scheduling annotations which specify whether methods can

be simultaneously enabled. The designer may want to check the constraints to ensure proper

performance, but this is not a functional correctness issue. Since the compiler schedules the

rules that interact with the FIFO, the compiler will ensure that the rules do not execute

concurrently unless the FIFO scheduling annotations indicate that such execution is consistent

with atomic and sequential rule execution.

An additional benefit of this design style is that it allows for easy swapping in and out

of modules. If a module that allows simultaneous execution of two of its methods results in a

critical path that is too long we can replace it by an equivalent module that completely

separates the two methods. The new module will have a smaller critical path but would not

allow the two methods to execute together. Again, because these properties are captured by the

scheduling annotations, the compiler would ensure that external rules are scheduled correctly.

In the next section we introduce the scheduling annotations. We then show how to

schedule a set of rules that interact with methods whose annotations are known. After that, we

show how rules should be connected to the modules they communicate with, and then show

how to compile entire modules.

4.2 Interface method annotations

Scheduling annotations describe the pair-wise relationship of methods, say h1 and h2.

Annotations must specify:

• if h1 and h2 can be called from a single rule

• if h1 and h2 are called from different rules can they be scheduled in parallel, and if

so, then do they impose any ordering on those rules

• if h1 can be called from two different rules simultaneously

65

The single rule specification is required because we have to ensure that the modular

circuit matches its flat equivalent. When we enable both h1 and h2, the outcome must be the

same as though the contents of the methods had been flattened into the module. Usually, this is

simply a validity question, that is, does a valid flat meaning for the two methods exist? For

example, suppose we are given the two action methods g1 and g2, a read method f1, two rules R1

and R2, and registers r and x:

module m
 method g1:

r := 1;
 when (true);

 method g2:

r := 2;
 when (true);

 method f1:

return r;
 when (true);
endmodule

rule R1: when (true) =>
m.g1();
m.g2();

rule R2: when (true) =>

m.g1();
x := m.f1();

If both methods g1 and g2 are enabled, then module m might give precedence to method g2 and

set r to 2. Hence, if module boundaries are maintained then the result of executing rule R1 is

that r is set to 2. However, if we flattened the design, we would obtain the rule:

rule R1: when (true) =>
 r := 1;
 r := 2;

This rule is not well defined because we are assigning to the same state twice, which violates

the parallel semantics of the flat reference model. Thus, it is invalid to call g1 and g2 from the

same rule, regardless of the modular implementation of g1 and g2. It should be clear that it is

always invalid to call the same action method twice from within the same rule (provided the

calls are not in mutually-exclusive branches of if statements). (Note: if it can be proven that

two method calls produce the same result, then they can be called from the same rule.

However, since we do not incorporate such a proof system in our compilation flow, we make

the conservative assumption that two different method calls always produce different results.)

It turns out that this property is also important for read methods. In the next chapter we

present compilation methods that allow read methods to observe values that action methods

66

write. For example, in the above example we expect that rule R2 is valid since it has a well-

defined flat meaning:

rule R2: when (true) =>
 r := 1;
 x := r;

If r is initially 0, then after executing R2 we expect r to contain 1 and x to contain the original

value of r: 0. Suppose that module m’s circuit is such that f1 returns the value of r after g1

executes. Given a modular circuit in the above scenario, r would contain 1 and x would contain

the new value of r: 1, after executing rule r2. Since this is different from the flat reference

model, we would not be allowed to call f1 and g1 from within the same rule. In this case, the

property of whether f1 and g1 can be called from the same rule depends on the implementation

of the module m.

We use the symbol h1 ⊕ h2 to indicate that flattening h1 and h2 into a rule has a well-defined

meaning and that calling the two methods has the same meaning as the flattened version

Scheduling annotations must also address whether methods can be simultaneously

called from multiple rules (or methods), and if so, whether there are any implied ordering

constraints. This information will be crucial to determining which rules can execute

simultaneously within each cycle.

We use the symbol h1 < h2 to indicate that if h1 and h2 are called simultaneously then the

behavior is such that it appears as though h1 executes followed by h2. Using the notation

from Chapter 3: h1 < h2 implies h1 ; h2 ≡ h1 $ h2

In the sample code above, depending on the module implementation, annotations “g1 <

g2” or “g2 < g1” could be valid. For example, if the write to r by g1 takes precedence over that

of g2, then “g2 < g1” applies. Similarly, if the circuits we generate do not forward values from

one method to another, then we know that “f1 < g1” applies. However, if f1 observes the value

written by g1, then “g1 < f1” applies. In general, “f < g” is true for all read methods f and all

action methods g unless we generate circuits that forward values between methods.

Figure 4-6 shows the scheduling annotations that we use in the modular compilation

flow. Each annotation combines the two types of properties that we discussed above: the

67

single rule behavior and the two rule behavior. During modular compilation we record these

annotations for each pair of a module’s methods in a Conflict Matrix (CM). An “X” in the

table indicates that no valid behavior will be observed for that annotation in either the single or

two rule case. Since a module does not know if two methods are being called from a single

rule or from two rules, the single rule and two rule behaviors must clearly be equivalent if both

are valid. (Note: in the example column of the table we assume a straight-forward module

implementation in which all reads happen before writes, i.e. no value forwarding is allowed.)

Annotation
Single-Rule

Behavior

2-Rule

Behavior
Example

ME don’t care don’t care h1: e1 when (x == 0)
h2: e2 when (x == 1)

CF h1 ⊕ h2 h1 < h2 ≡ h2 < h1
h1: x := 5
h2: y := 6

< h1 ⊕ h2 h1 < h2
h1: x := y
h2: y := 5

> h1 ⊕ h2 h2 < h1
h1: x := 5
h2: y := x

P h1 ⊕ h2 X h1: x := y
h2: y := x

<R , >R / EXT X h1 < h2 ≠ h2 < h1
h1: x := 5
h2: x := 6

<R X h1 < h2
h1: x := x+1
h2: x := 6

>R X h2 < h1
h1: x := 6
h2: x := x+1

C X X h1: x := x+1
h2: x := x+1

Figure 4-6: Interface method annotations

Several things are worth noting about the annotations:

• The first case in this table is a special case: If two methods are mutually-exclusive

(ME), that is, their guards (implicit conditions) can never simultaneously be true,

then the methods obviously cannot affect each other since they will never be called

68

simultaneously. (A single rule that calls ME methods will never execute since the

rule’s guard will never be true.)

• The P annotation says that the parallel behavior of g1 and g2 (g1 ⊕ g2) is not

explainable as sequential behavior of g1 and g2. Hence, two rules containing such

method calls cannot be scheduled simultaneously but it is permissible to call g1 and

g2 within the same rule (or method).

• Even though annotation (<R, >R) makes sense we do not allow it for pragmatic

reasons. It would require the scheduler to pass the information into the module

about what order it has chosen for g1 and g2. We require the module to make this

choice and specify it in its CM as <R or as >R.

• Generally, an action method is not allowed to be invoked more than once from two

different rules. However, there is one interesting exception which corresponds to

the annotation EXT. Consider the action method “g(a): x := a”. Suppose one rule

calls “g(3)” and another rules calls “g(4)”. It is possible to wire the module

externally so that either argument 3 or 4 is passed to g and allow both rules to be

scheduled concurrently. We indicate this property of an action method with the

annotation EXT. EXT can only describe the relationship of an action method with

itself. Hence, it will only appear as a diagonal entry in a conflict matrix.

4.2.1 Conflict matrices

As an example of a module’s annotation, Figure 4-7 shows the CM (Conflict Matrix) for the

primitive register element. The CM shows the pair-wise scheduling relationship between the

read and write methods. For example, the “read < write” annotation specifies that the two

methods can be simultaneously called from either one or two rules. The annotation also

specifies that if simultaneously enabled, it will appear as though the read executes before the

write executes.

h1 \ h2 read write

read CF <

write > EXT

Figure 4-7: Register annotations

69

The next sections present algorithms that show how we schedule rules given the CM of

the modules called. We will also show how the CM’s in a module hierarchy can be derived,

given only the register CM for the leaf nodes. However, this section first shows how important

the specifications provided by the CM are. Using the FIFO example from earlier in this chapter

we show how the “same” FIFO could have different implementations (CM’s) that yield quite

different behaviors. Usually these behaviors are captured as part of an English specification,

which are easy to ignore, misinterpret, etc. In our modular compilation flow, these properties

are captured in the FIFO’s CM and are a core piece of each module—whether user prescribed

or compiler-derived.

h1 \ h2 enq deq clear first

enq C C < R >

deq C C < R >

clear >R > R C >

first < < < CF

(a)

h1 \ h2 enq deq clear first

enq C >R < R >

deq <R C < R >

clear >R > R C >

first < < < CF

(b)

h1 \ h2 enq deq clear first

enq C <R < R <R

deq >R C < R >

clear >R > R C >

first >R < < CF

(c)

Figure 4-8: Three FIFO conflict matrices

70

Figure 4-8 shows three possible conflict matrices (there are many more) for the FIFO

module. Given the code in Figure 4-2, all three of these could be the result of modular

synthesis. Similarly, a reusable IP library could make any one (or several) of these available to

a designer. Since we assume that the compiler does not look at the internals of precompiled

blocks, these CM’s are the only information that is available about how the FIFO can be used.

 Although all three CM’s are mostly the same, the differences have a large impact in

how their corresponding implementations can be used. The first CM (a), has “C” entries for the

enq and deq method pairs. This means that the two methods must not be called simultaneously

within the same cycle. As we saw earlier, it is easy to construct an implementation in which

such a restriction applies since enq and deq might not act atomically on the FIFO state when

simultaneously enabled. The second CM (b) allows enq and deq to execute simultaneously in

different rules and it will appear as though deq executes followed by enq if both methods are

enabled. In many cases, this is the desired FIFO behavior. The third CM (c) also allows enq

and deq to execute simultaneously. However, in this case, it will appear as though enq happens

followed by deq. This means that if the FIFO is initially empty then an enqueued value will fly

through the FIFO if both methods are called (the value is enqueued and then immediately

dequeued).

All three of these FIFO implementations are valid and are useful depending on the

circumstances. Without a clear specification, such as the scheduling annotations inside the

CM, it is hard for a user to understand what type of block is being worked with, and impossible

for a compiler to deduce the necessary information. Thus, we believe these types of

annotations must be part of a specification for hardware blocks to be easily reused. In addition,

the scheduling algorithms that follow allow us to swap these different FIFO’s in and out of a

design without having to rewrite the rules that interact with them.

4.3 Module hierarchy

Most of our work on modular synthesis assumes a module instance call graph that forms a tree.

This restriction simplifies the compilation process because it allows circuit generation and

scheduling to occur on a module-by-module basis. In contrast, if we allow arbitrary call

graphs, then one module’s schedule can be affected by the actions of another module. Hence,

either global knowledge about other modules is required or additional logic has to be added to

71

coordinate these modules’ actions. We outline some of these strategies at the end of this

chapter. However, we believe a tree-like call graph is reasonable for many designs.

We can always transform a design that does not satisfy the tree hierarchy condition into

a design that does satisfy the condition. A naïve algorithm is to FLATTEN the entire design as

was shown in Chapter 3. This results in a single top-level module that calls the methods of

only primitive modules. (Primitive modules by definition do not interact directly with one-

another.) However, we can do better than this by only merging modules that make calls to a

shared module and those modules that are part of a cycling call structure. This algorithm is

shown in Figure 4-9. An associated image that depicts its operation is shown in Figure 4-10.

MAKETREE =
 1. while (the module instance call graph contains a cycle)
 a. pick a set M of modules instances {ma, mb, …}
 that form a cycle
 b. MODMERGE(M)

 2. while (a module exists whose methods are called by more
 than one other module)
 a. pick a set M of modules instances {ma, mb, …} that
 make method calls to a common module
 b. MODMERGE(M)

Figure 4-9: MAKETREE algorithm

Figure 4-10: MAKETREE operation

remove multiple modules making
calls to the same module

remove cycles

mtop mtop

⇒

72

(Note: The MAKETREE procedure assumes that MODMERGE can accept a set of

modules as input. We previously defined MODMERGE to only operate on a pair of modules, but

this can clearly be extended to a set of modules by repeated merging of module instance pairs.

Unless otherwise specified, we assume throughout the remainder of this chapter that the

module call structure has been transformed to be a tree—either by the designer or using the

MAKETREE procedure.)

4.4 Rule scheduling using module interface annotations

The previous sections have discussed the benefits of a modular rule-based description and

introduced a set of scheduling annotations that describe how the module can be used. This

section shows how to actually schedule rules given a module whose annotations are known.

We also show how to generate the circuits that connect rules to the module interfaces. The

following section then shows how to derive the module annotations and how to generate

circuits for interface methods.

4.4.1 Rule validity

Before generating circuits and schedulers for a set of rules, we need to verify that each rule is

valid, that is, it does not attempt to modify the same state more than once. Hence, as long as all

pairs of methods in the rule have valid parallel (single rule) execution behavior, the rule is

valid. More formally, if a pair of method calls m.g1 and m.g2 that are made inside a rule have

the property that CMm[g1][g2] ∈ {C, <R, >R, ME}, then the rule is not valid since the single

rule execution for that pair of methods would not be defined. Technically ME is not invalid,

but since it implies that the rule will never execute, we flag it as an error. Clearly, we also only

need to consider method calls to the same module since we know that due to the tree structure,

method calls to different modules will never interact. A final restriction on the validity check is

that we only need to consider method call pairs that are not in mutually-exclusive blocks within

a rule. For example, in the code below, if the compiler can derive that the two conditionals are

mutually-exclusive, then it should not flag the rule as invalid, even if m.g1 and m.g2 are

conflicting (C). Although the two methods do not have well defined single-rule behaviors, they

will not be enabled simultaneously within this rule and hence it must be a valid rule.

73

rule R: when (true) =>
 if (x < 7) then
 m.g1;
 if (x > 7) then
 m.g2;

As described above, we apply the following VALIDRULE? procedure to each rule to

determine its validity. MethodCalls(R) is assumed to return the set of method calls made by

rule R.

 VALIDRULE?(R) =
 foreach mi.ga ∈ MethodCalls(R) do
 foreach mj.gb ∈ (MethodCalls(R) - mi.ga) do
 if ((mi == mj) & (CMmi[ga][gb] ∈ {C, <R, >R, ME} &
 (the calls to mi.g1 and mi.g2 in R are not
 in mutally exclusive code segments))) then
 return FALSE;
 return TRUE;

Figure 4-11: VALIDRULE procedure

4.4.2 Rule scheduling

Next, we need to determine if each pair of rules R1 and R2 can be scheduled simultaneously,

and if so whether there is an implied ordering constraint. Suppose we want to know if it will

appear as though R1 executes before R2 if both rules are enabled. For this to hold, it must be

true that it will appear as though every method that is called in R1 will appear to execute before

every method in R2 executes. Thus, we start with the assumption that such scheduling is

possible, and constrain the result as we examine each pair of method calls. If we encounter a

method pair that does not satisfy a given ordering, then the rules will not satisfy that ordering

either. We show this procedure in Figure 4-12. Again, as in the VALIDRULE procedure, we

only need to consider method call pairs to the same module since we assume a tree module call

structure, and only method call pairs in non-mutually-exclusive code blocks need to be

considered. We use a least-upper-bound (LUB) operator as the constraining function. It is

defined over the lattice of annotations in Figure 4-13. The smallest value in this lattice is CF,

the largest is C.

74

 DERIVEREL(R1, R2) =
 result = CF;
 foreach mi.ga ∈ MethodCalls(R1) do
 foreach mj.gb ∈ MethodCalls(R2) do
 if (mi == mj) then
 if (the calls mi.g1 and mi.g2 in R are not
 in mutually-exclusive code segments) then
 if (CMmi[ga][gb] == ME) then
 return ME;
 else
 result = LUB(result, CMmi[ga][gb]);
 return result;

Figure 4-12: DeriveRel procedure

Figure 4-13: Annotation lattice

If the result of DERIVEREL(R1, R2) is an element of the set {CF, <, EXT, <R}, then

enabling R1 and R2 simultaneously will appear as though R1 executes before R2 (provided of

course, the circuits to call the methods that R1 and R2 call are generated correctly). Similarly, if

the result is an element of the set {CF, >, EXT, >R}, then enabling R1 and R2 simultaneously

will appear as though R1 executes after R2. As might be expected, there is some overlap in

these cases—if the result is CF or EXT, then either order is possible. Thus, for each pair of

rules, we can determine their sequential scheduling relationship. This is precisely the

information that Hoe and Arvind’s[27, 29] synthesis algorithm requires to generate a scheduler.

Thus, we can derive the pair-wise rule information using the procedure above and then feed it

directly into Hoe’s unmodified scheduler. (Note: This works when we are just compiling rules.

We will see that some modifications are required when scheduling a module’s rules together

with the module’s methods.)

CF

<

>

P EXT

<R

>R

C

75

4.4.3 Rule circuit generation

In the previous section we saw how to schedule rules given only the scheduling annotations for

the methods they interact with. We now show how to generate the circuits that connect the

rules to the methods they call. As mentioned in Section 4.1.1, each method has a ready output

signal (_rdy) to indicate whether its implicit condition is true, an enable input signal (_en) that

indicates whether the method should execute, and a data input bus that is used to pass

parameters. In addition, read methods have a data output bus to return their value. Circuit

generation requires us to incorporate the ready signals into rule predicates, assert the enable

signals, and supply input parameters for all the called methods. The outputs (results) of method

calls can be fed directly into combinational logic. The circuits are generated as described in

Figure 4-14. We explain each section in this circuit generation procedure in the following

paragraphs.

Rule predicate generation:

 πi_new = new rule predicate
 πi_old = old rule predicate
 mx.ga.rdy = rdy signal for method call mx.ga in rule Ri
 pi_mxga = conditional predicate of mx.ga call in Ri

 πi_new = πi_old
 foreach method call mx.ga in Ri do
 πi_new = πi_new & (mx.ga.rdy | ~pi_mxga)

Method enable generation:

 mx.ga.en = false;
 foreach rule Ri that makes a call to mx.ga do
 mx.ga.en = mx.ga.en | (φi & pi_mxga)

Method parameter (data) generation:

 if (DERIVEREL(mx.ga, mx.ga) == EXT) then
 mx.ga.data = parameter value that the last rule that is
 scheduled and that calls mx.ga contains.
 else
 mx.ga.data = parameter value that the rule that is
 scheduled and that calls mx.ga contains.

Figure 4-14: Modular circuit generation

76

Rule predicates (πi‘s) are generated as follows. If a rule contains a method call whose

implicit condition (ready signal) is false, then the rule must not execute, provided that the

method is not located in a conditional block whose predicate is false. We prevent such rules

from being scheduled by conjugating the implicit condition, along with the negation of any

conditional predicate (pi_mxga) with the rule’s guard (π). This logic structure is required to

match the behavior of the flattened design in which we had special rules for lifting of when’s

across conditionals (see Section 3.2.2). (We use the term pi_mxga to represent the predicate

surrounding a call to mx.ga in rule Ri. If the method call is not located within an if statement,

then no such predicate exists and we set pi_mx.ga to true. If multiple calls to a method occur

within one rule, then we clearly need one predicate term for each method invocation. Since

methods can be called at most once from each rule, at most one of these terms could be true at

any time.)

The reader should recall that rule predicates feed into a scheduler (see Figure 2-6). The

scheduler in turn generates a φ signal for each rule that should execute in a given cycle. Hence,

if a rule executes (its φ signal is true) and it makes a call to a method mx.ga, then mx.ga’s enable

signal (mx.ga.en) should be set to true, provided that the method is not called in an if statement

whose predicate is false (pi_mxga).

Input parameter value (mx.ga.data) generation depends on the type of method being

called. If the method has an EXT annotation, then the rule that appears to execute after all

other rules in the schedule passes the value to the method. Assuming a fixed relative

scheduling ordering among rules, this can be implemented as a priority encoder. A multiplexer

can be used for all non-EXT methods since each non-EXT method can be called from at most

one rule in each cycle.

It should be noted that method interfaces (ports) can be viewed as resources in this

scheduling / circuit generation approach. The same method cannot be called twice in the same

cycle except for the EXT case. Another exception occurs when a purely combinational method

is called with the same arguments in two rules. In this case, both rules can share the result of

the return value.

77

4.5 Deriving module interface annotations

The same procedure that was used to derive the scheduling relationship among rules

(DERIVEREL) can be used to determine the scheduling relationship (interface annotation) of

interface methods: DERIVEREL(g1, g2) returns the interface annotation for methods g1 and g2.

If we determine the relationship of all of a module’s method pairs we obtain the module’s CM.

This CM can in turn be used to schedule modules higher in the module hierarchy. As with

rules, we also need to perform a validity check on every method to ensure that it does not

invoke a pair of methods that update the same state. Since we do not permit the caller to

dynamically choose the order of method execution, we need to select between <R or >R in case

a pair of methods can be scheduled in either order.

Using the primitive register CM in Figure 4-7, we can derive the FIFO CM by applying

the DERIVEREL procedure to all FIFO method pairs. This results in the CM shown in Figure

4-15. This FIFO could then be used as a precompiled module in another design, such as the

processor that we described in Figure 2-5. However, we would soon find that the annotations

are more restrictive than the designer most likely intended. Since the enq and deq FIFO

methods conflict, they cannot be called by two rules within the same cycle. This leads to the

two processor stages not executing concurrently, that is, one stage will execute in one cycle and

another stage will execute in the next. Clearly this is not satisfactory throughput. We should

note that this performance problem arises regardless of whether the modular flow is used or the

design had been flattened first.

h1 \ h2 enq deq clear first

enq C C < R >

deq C C < R >

clear >R > R EXT >

first < < < CF

Figure 4-15: Derived FIFO annotations

The next chapter improves on this flow by allowing the designer to add a performance

specification to the design. A design transformation algorithm will then ensure that those

specifications are satisfied without altering the design’s functionality. However, at this point

78

we can introduce a solution which is dangerous from a correctness perspective but allows the

designer to utilize high-level knowledge that the compiler cannot derive. For example, the

code below shows two methods which conflict since they both read state that the other rule

writes. However, using high-level knowledge we know that the two methods will execute

correctly if we enable them simultaneously and that their execution can be explained as

execution in either order. The reason we can argue this is that we know that if a pointer is

incremented in either method, it will remain positive (x > 0 implies (x + 1) > 0). (A very

similar problem arises in the case of circular buffer pointers.) Generally, the compiler cannot

derive such information because it relies on domain and range analysis, not a proof system that

includes numerical analysis. Hence, it must assume that the two methods conflict.

 method g1:
 cptr := cptr + 1;
 when ((pptr > 0) & (cptr < 8));

 method g2:
 pptr := pptr + 1;
 when ((cptr > 0) & (pptr < 8));

A tougher case was encountered while designing the reorder buffer (ROB) of a

microprocessor. Higher level logic ensured that the two simultaneous writes into the ROB

could never be to the same slot but this fact is not deducible from the rule analysis without a

theorem prover.

Thus, we allow the designer to override compiler-derived scheduling annotations. This

is a dangerous operation since a mistake will lead to incorrect and hard-to-debug functionality,

precisely what we aimed to avoid through this new synthesis process. However, for carefully

crafted designs that are incorporated into pre-compiled libraries, this can be a useful feature.

Because we attach annotations to modules, such assertions only have to be made at the module

where the high-level knowledge is known, not at the top level as would be required in a flat

synthesis flow. This limits the scope of the design that needs to be verified manually.

4.6 Module compilation

An important observation when compiling rules together with a module’s interface methods is

that interface methods are nearly identical to rules. The only difference is in the way they are

scheduled. Rule scheduling is a local operation within a module. In contrast, methods are

79

scheduled external to the module. Whether or not the method executes is indicated through the

method’s enable signal. Thus, the enable signal can be thought of as the method’s equivalent to

rules’ φ signals.

Surprisingly, the module interface annotations have implications for rule scheduling

inside the module as well. In general a module does not know if two methods are being

invoked from one rule or from two rules. The semantics must be such that the module behaves

correctly in either case, provided the external scheduler is following the constraints imposed by

the interface. When two methods are called from one rule then it must appear as if the external

rule (together with the methods it calls) executes atomically with respect to the rules inside the

module. Thus, if we do not know if the enabled methods are being called from a single or from

multiple rules (because both would be valid executions), then the scheduler must assume that

they are being called from a single rule and schedule all internal rules to either occur before or

after the methods. Alternatively, the annotations must be restricted to not allow single-rule

execution.

The above problem is best illustrated via an example. Consider the following rules and

methods, where initially all registers contain 0. If Rext executes followed by Rint we expect the

result r1 = 10 and r2 = 1. If Rint executes followed by Rext we expect the result r1 = 110 and r2

= 0. These are the only permissible outcomes for sequential execution of these two rules.

However, a naïve scheduler may decide that it is alright to schedule g1, g2 and Rint with the

implied ordering: g1 < R < g2. This would result in r1 = 10, r2 = 0, which violates the atomic

rule execution requirements.

module m
 method g1:
 r1 := r1 + 100
 when (true);

 method g2:
 r2 := 0
 when (true);

 rule Rint: when (true) =>
 r1 := 10;
 r2 := r2 + 1;
endmodule

module top
 rule Rext: when (true) =>
 m.g1();
 m.g2();
endmodule

80

This problem can be avoided by either scheduling the module such that both methods

appear to execute either before or after the internal rule. Alternatively, we can restrict the

methods so that they cannot be invoked from a single rule, for example by changing the

annotation from “<” to “<R”—such restricting is always safe since we are limiting allowable

behaviors, and not introducing new behaviors. This would ensure the module is used correctly,

but would also invalidate the Rext rule.

To complete the modular compilation flow we present the COMPILE procedure. This

procedure performs a bottom-up compile. After compiling all child modules, it uses the child

module annotations to generate the scheduler and circuits for the parent module’s rules and

methods. The GENERATESCHEDULER procedure generates a scheduler using Hoe and Arvind’s

scheduler generation algorithms with the additional restrictions presented in this section. The

GENERATECIRCUIT procedure is equivalent to the circuit generation described in 4.4.3 (this

procedure applies to both rule and method circuit generation since the process is equivalent).

COMPILE(m) =
 1. // Compile each module invoked by m (bottom-up)
 foreach module mi invoked by m do
 COMPILE(mi);
 2. // Compile the module m
 foreach RorMa ∈ rules and interface methods of m do
 if (!VALIDRULE?(RorMa)) then
 return ERROR;
 foreach RorMb ∈ rules and interfaces methods of m do
 CMm[RorMa][RorMb] = DERIVEREL(RorMa, RorMb)
 3. GENERATESCHEDULER
 4. GENERATECIRCUIT

Figure 4-16: Modular COMPILE procedure

(Note: after modular rule-based compilation has been performed the design is

transformed into gates using a tool such as Synopsys Design Compiler. During gate-level

synthesis at least part of the design may be flattened to allow combinational optimizations

across module boundaries.)

81

4.7 Results

Part of the impact of this modular flow is hard to quantify. For example, we do not know how

many errors are avoided by using such a flow and we do not know how much time is saved by

easily swapping in and out modules with different performance characteristics. Empirically,

we believe it helps the design process and a flow at least partially based on these ideas is being

incorporated into the Bluespec product. Others have also successfully utilized this flow to

implement complex processors[11, 14].

We can quantify the advantage this flow has in compile times compared to a flow in

which the design is first completely flattened. Figure 4-17 summarizes scheduling and compile

time results from experimentation on several processor models. These examples illustrate the

dramatic improvement in compile times that we see when using the modular flow. They also

show that scheduling improves over the flat approach if we allow the designer to alter

scheduling at some of the interfaces.

We worked with two ISA’s—one very simple design that contains 5 instructions (5I)

and one that implements a MIPS-II core[31]. The MIPS core is implemented as a fully

bypassed 5-stage pipeline. In order to stress the synthesis, all designs used a complex,

recursive definition of a highly-parameterized FIFO as pipeline / bypass registers. The only

primitive module that was used in all designs was the primitive register. Simulations of

binaries running on each processor were used to verify their functionality.

Each processor was synthesized using both the flat Bluespec flow and a modular flow.

We performed modular compilation by synthesizing individual blocks and then incorporating

the resulting Verilog as primitive blocks in the higher level compilation. The modular flow

compiled the FIFO, and in one case also the register file (RF), as a separate module. Because

of the complexity of the FIFO description, the compiler could not derive optimal annotations in

the modular flow, or rule schedules in the flat flow. However, by allowing the designer to alter

the annotations of the FIFO module (something that has to only be done once and can then be

reused in all processor designs), we were able to achieve optimal schedules in all modular

compilations.

82

Processor Optimal
Schedule

Partial
Eval. Scheduler Total

5I 2-Stage Flat No 0.7s 1.0s 3.2s
5I 2-Stage Modular Yes 0.1s 0.1s 2.0s
5I 5-Stage Bypass Flat No 26.8s Opt. OFF 29.4s
5I 5-Stage Bypass Modular Yes 0.9s 0.2s 3.6s
MIPS Flat No 1036.1s Opt. OFF 1052.0s
MIPS Modular FIFO Yes 46.0s 218.1s 275.8s
MIPS Modular FIFO + RF Yes 21.9s 1.8s 35.7s

Figure 4-17: Flat vs. modular compilation

The two largest compilation phases are partial evaluation and scheduling. The partial

evaluation phase expands the code by inlining functions and modules, performs partial

evaluation wherever possible, unrolls recursive calls, etc. The scheduling phase of the compiler

generates the scheduler—decides which rules are mutually-exclusive, conflicting, etc. In both

of these phases the modular flow is significantly faster than the flat flow. This is largely due to

fewer rules needing to be compiled when using the modular flow and due to the reduction in

the size of expressions. In the scheduling phase, not all optimizations could be turned on in the

flat flow because expression sizes got too large for analysis, which is exponential in its runtime.

As expected, the total compile time is dramatically less in the modular flow. We should note

that area and timing were nearly identical in the two compilation approaches and closely

matched results from a hand-coded implementation.

4.8 Possible improvements to the modular flow

There are several areas in which this modular flow can be improved. We touch on two of them

in this section. The first concerns the restriction that the modular flow only applies to designs

that form a tree-like module hierarchy. For many designs this is not a severe restriction.

However, there are designs, such as a processor design with reorder buffer (ROB), in which it

is more natural to have many modules (for example functional units) interacting with a

common module (the ROB). In such cases it is possible to restructure interfaces to satisfy the

tree requirement but it does not come natural to the design process. Allowing a modular

compilation flow for such designs would be attractive.

83

In Figure 4-18 we show several non-tree structures that make modular compilation

difficult. In general, the problem with such structures is that a module can no longer be

compiled in isolation because its interactions with other modules depend on the other modules’

behavior. For example, in the first picture of Figure 4-18, the top module does not know

whether it can call the right module’s method unless it knows if the bottom module is also

making a call to that method. In general, these problems can only be avoided if additional glue

logic is added external to the modules, something we have attempted to avoid in the

compilation flow since it breaks the level of abstraction that modules are self contained.

A special case in which the modular flow can be applied to non-tree module call

structures is the case in which two modules call methods of a shared module and the two

methods are mutually CF. This corresponds to the second graph in Figure 4-18, with the

assumption that the two methods of the module on the right are CF. Since by definition, CF

methods do not interact, such a graph could be synthesized in the modular flow.

Figure 4-18: Non-tree module structure

A second problem with modular compilation is that it does not always achieve as good

performance as flat compilation. For example, consider the code below. In a modular flow the

compiler determines that the two methods g1 and g2 conflict since they could both write to the

same state. Thus, it must conclude that rules R1 and R2 also conflict and hence cannot execute

concurrently in one cycle. However, if we flatten the design and propagate constants (as shown

in module top-Flattened), then the compiler would obviously conclude that the two rules do not

conflict. Thus, although functionally not incorrect, the modular compilation flow does not

perform as well as a flat flow in this case.

84

module m
 method g1(x):
 if (x == 0) then
 r1 := 1;
 else
 r2 := 2;
 when (true);

 method g2(x):
 if (x == 0) then
 r1 := 3;
 else
 r2 := 4;
 when (true);
endmodule

module top
 rule R1: when (true) =>
 m.g1(0);

 rule R2: when (true) =>
 m.g2(1);
endmodule

module top-Flattened
 rule R1: when (true) =>
 r1 := 1;

 rule R2: when (true) =>
 r2 := 4;
endmodule

In general, this type of performance penalty is rare (we have not observed it in any

design yet), but is not an unusual problem to have in a modular compilation flow. Modular

procedure compilation in software faces similar issues.

4.9 Chapter summary

This Chapter presented an algorithm for modular compilation of atomic actions. This

compilation strategy greatly improves compile times, which in turn makes experimentation

with larger designs more practical. More importantly, we believe we have introduced a flow

that encourages correct-by-construction design and facilitates the exchange of reusable blocks.

By incorporating semantics via the scheduling annotations into interface methods we can

ensure that modules are used correctly. Furthermore, the scheduling of rule interactions with

modules is handled by a compiler, which allows blocks with different schedules to easily be

swapped in and out of a design. Together, we believe these contributions enhance the design

flow and should make it easier to experiment with and design larger systems.

85

Chapter 5

Performance Specification and the EHR

Some performance guarantees in digital design are as important as correctness in the sense if

they are not met we do not have an acceptable design. For example, suppose we have a

pipelined processor which executes programs correctly but its various pipeline stages cannot

fire concurrently because of some ultraconservative interlocking scheme. We are unlikely to

accept such a design. Similarly, in the reorder buffer (ROB) of a modern 2-way superscalar

processor, the designer may not feel that the design task is over until the ROB has the

capability of inserting two instructions, dispatching two instructions and writing-back the

results from two functional units every cycle[12]. Even simple micro-architectures (and not

just related to processors) can present designers with such performance-related challenges[2].

It is important to understand that such requirements emanate from the designer of the micro-

architecture as opposed to some high-level specification of the design. To that extent, only the

designer can provide such specifications and they should be a core component of any high-level

synthesis flow.

Bluespec relies on sophisticated scheduling of rules to achieve these goals. However,

when the high-level performance goals of a designer are not met then an understanding of the

schedule generated by the Bluespec compiler becomes imperative on the part of the designer

before improvements can be made. This can be a challenging process. Furthermore, due to the

limitations of the scheduler we have thus far described, the designer cannot always resolve

86

these issues without reverting to unsafe solutions, such as Bluespec Inc.’s RWire, the

scheduling overrides that we introduced in the previous chapter, or other constructs that can

easily introduce functional errors and make the design process substantially more difficult than

we would like.

This chapter presents a new scheduling algorithm that makes user-defined scheduling

constraints a core part of a design description[45, 46]. The designer can specify which rules (or

methods) should execute within a cycle if their guards are satisfied and what order they should

appear to execute in. These scheduling constraints are used by our new compilation flow to

transform the design into a derived design which is guaranteed to be functionally equivalent to

the original design and is also guaranteed to satisfy the designer’s performance goals. This is a

powerful and useful addition because important scheduling decisions can now be enforced by

the designer rather than leaving them up to the vagaries of the compiler-generated scheduler.

We explain the new compilation flow by first introducing a well understood TRS

transformation: rule composition. As we will show, rule composition is a tool that allows

designs to be transformed so that they satisfy user-prescribed schedules. Finally, we address

the major problem with rule composition in the context of hardware synthesis, which is that it

creates an explosion of the number of rules and methods within the design. We avoid this

problem by introducing a new hardware element, the Ephemeral History Register (EHR), along

with new scheduling algorithms. These algorithms allow us to schedule rules so that it appears

as though they are part of many composite rules without actually creating the compositions.

We demonstrate the power of the scheduling constraints via a simple greatest common

divisor (GCD) circuit and a pipelined processor. In this chapter we show that by simply

changing the performance constraints we can transform the pipelined processor into derivative

designs such as an unpipelined processor, a superscalar processor, or a design with rescheduled

branch resolution. These examples demonstrate that micro-architecture exploration and design

specification are made much easier with the new synthesis algorithms. In the next chapter we

examine the resulting circuits in more detail and show the resulting tradeoffs between

scheduling (throughput) and the circuit’s critical path.

We should note that the scheduling algorithms that we introduce in this chapter

supplement the work described in the previous chapter. We continue to fully utilize the

modular and rule-based abstractions, and rely on a modular synthesis flow to synthesize the

designs after we have transformed them using this chapter’s synthesis algorithms.

87

5.1 Understanding scheduling as rule composition

This section explains rule composition and shows how user defined schedules can be explained

via rule composition. We first define rule composition and then show how it can be

implemented as rules with conditional actions. We then show how rule composition can be

used to satisfy scheduling constraints.

5.1.1 Rule composition

A fundamental property of rule-based descriptions is that if we add a new rule to a set of rules it

can only enable new behaviors; it can never disallow any of the old behaviors. Furthermore, if

the new rule being added is a so called derived rule then it does not add any new behaviors[5,

54]. Given two rules Ra and Rb we can generate a composite rule that executes Rb after Ra as

follows:

rule Ra,b: when (πa(s) & πb(δa(s))) =>
 s := δb(δa(s))

It is straightforward to construct the composed terms πb(δa(s)) and δb(δa(s)) when

registers are the only state-elements and there are no modules. We illustrate this by the

following two rules that describe Euclid’s greatest common divisor (GCD) algorithm. They

compute the GCD of two numbers by repeated subtraction and swapping of values. Note, these

are the same rules we explored in Section 1.4:

rule Rsub: when ((x >= y) & (y != 0)) =>
 x := x – y;

 rule Rswap: when ((x < y) & (y != 0)) =>
 x := y;
 y := x;

Using either Hoe and Arvind’s compilation algorithms, or the modular algorithm from

the previous chapter, we find that these two rules conflict since they both read the state that the

other rule modifies. However, the designer may not want the swap to occupy an entire cycle

since it does not perform much work (swapping values takes much less logic than a

subtraction). A solution to this problem is to derive a new “high performance” Rswap,sub rule

that immediately performs a subtraction after a swap. By combining the swap and subtract into

88

one rule we reduce the number of cycles that it takes to compute the GCD, and presumably do

not significantly impact the cycle time of the circuit. The derived composed rule is shown

below. We name the temporary values written by Rswap, as xswap’ and yswap’:

let xswap’ = y; yswap’ = x; in
 rule Rswap,sub : when ((x < y) & (y != 0) &
 (xswap’ >= yswap’) & (yswap’ != 0)) =>
 x := xswap’ – yswap’;
 y := yswap’;

After substitution for xswap’ and yswap’, this rule is equivalent to the following rule:

rule Rswap,sub: when ((x < y) & (y != 0) &
 (y >= x) & (x != 0)) =>
 x := y – x;
 y := x;

Since the Rswap,sub rule was formed by composition it can safely be added to the GCD

rule system. We can then generate a circuit for the three rules: Rsub, Rswap and Rswap,sub using the

scheduling algorithms from the previous chapter, giving preference to the Rswap,sub rule when it

is applicable. This circuit performs better than the original rule system which only contained

Rsub and Rswap since it allows both the swap and subtraction to occur within a single cycle.

Without composition, the scheduling analysis would not have been able to derive this

parallelism and only one of the two rules would have executed each cycle. Clearly, this type of

transformation improves the number of operations performed per cycle (throughput).

However, it can also increase the cycle time since we are chaining operations. We analyze this

issue in the next chapter.

As the GCD example shows, rule composition is an interesting tool that allows us to

achieve better schedules (performance) without altering the functionality of the design. In fact,

rule composition can allow us to create a composed rule for any set of rules, provided the rules

access only registers (or primitive elements whose composition is well understood). As an

example of the use of rule composition, Mieszko Lis wrote a source-to-source TRS

transformation system to compose rules and applied it to a number of designs including a

pipelined processor[35]. His system produced new rules by taking a cross product of all the

rules in a system and filtered out those composite rules that were “uninteresting” in the

following sense: Composition of R1 followed by R2 was considered uninteresting if either (i) it

showed that R2 could not be enabled after R1 executed or (ii) if R1 and R2 were already CF or

SC. In the latter case the scheduler would have scheduled them concurrently anyway and a

89

new rule was not required. Lis’ system was able to generate all the interesting composite rules

and by applying it to a simple processor pipeline’s rules was able to automatically generate all

the rules for a 2-way superscalar version of the processor. He was further able to show the

robustness of his transformation (and filtering) by applying the transformation again to the

generated 2-way rules to produce the rules for a 4-way superscalar micro-architecture. What is

fascinating about this work is that it is based purely on the semantics of rule execution and does

not use any knowledge specific to processor design.

The biggest problem in exploiting Lis’ transformation is that in spite of his filtering of

“uninteresting” composite rules, the compiler can generate a large number of new rules. He

reports that the number of rules increased from 13 for the single issue pipeline to 74 for 2-issue,

409 for 3-issue, 2,442 for 4-issue and 19,055 for 5-issue pipeline[35]! These numbers reflect

filtering out 24% to 41% of the possible composite rules. Although interesting from a

theoretical viewpoint, this methodology is clearly not practical to generate hardware since the

number of composite rules tends to grow exponentially with number of rules in the original

system and the number of compositions that are performed.

Next we show how the issue of rule explosion can be avoided by introducing

composition of conditional actions.

5.1.2 Rule composition using conditional actions

We now introduce conditional actions as an alternative method for rule composition.

Conditional actions in rule generation subsume many natural behaviors of subsequences of

rules firing, thereby dramatically reducing the number of rules that are generated during

composition. Later, we show how to generate efficient circuits from these rule compositions

based on conditional actions.

An example of the problem that conditional actions address is the Rswap,sub rule that we

provided earlier. This rule only covered the case when both Rswap and Rsub rules were

applicable. As an alternative, consider the following rules based on conditional actions.

90

rule Rswap&sub: when (true) =>
 Rswap; // when lifted version of Rswap
 $
 Rsub; // when lifted version of Rsub

or:

rule Rswap&sub: when (true) =>
 if ((x < y) & (y != 0)) then
 x := y;
 y := x;
 $
 if ((x >= y) & (y != 0)) then
 x := x – y;

To understand the meaning of these rules we must clarify why we replaced the rules’

when clauses by if statements, and what it means for a rule body to contain a “$”. Replacing

the rules’ when’s by if’s is performed simply via when lifting as described in Section 3.2.2

(after when’s have been lifted a when statement is equivalent to an if):

 when (p1) => a1; ⇔ if (p1 & a1_cond) then a1_body;

In these rules, the meaning of “$” is the same as we introduced in 3.3.2, that is, the

actions following the “$” see the effect of actions before the “$”. More formally we said, given

an initial state S, and rules Ra and Rb, we obtain the result state Snext when evaluating Ra $ Rb:

Snext = ERule〚Ra $ Rb〛S

Is equivalent to:

S’ = ERule〚Ra〛S
Snext = ERule〚Rb〛S’

This new rule has the advantage over standard composition in that it behaves as rule

Rswap if rule Rsub does not get enabled; it behaves as rule Rsub if rule Rswap does not get enabled

and behaves as Rswap followed by Rsub if Rswap is enabled and that in turn does not disable Rsub.

Hence, based on conditional actions, we have generated a single rule that behaves as three

rules: Rsub, Rswap, and the derived composed rule Rswap,sub. For n rules, this approach introduces

at worst one rule consisting of n conditional actions, whereas traditional composition introduces

an exponential number of new rules during composition.

Previous synthesis and scheduling algorithms cannot compile rules and methods that

contain a “$” since there was no notion of sequencing within a rule. However, with appropriate

91

renaming we can derive an equivalent rule which eliminates the “$” from the rule. We

illustrate this again via the GCD example. The basic idea in this renaming scheme is that we

read the initial values of x and y into x0 and y0. We then compute the next state values for

actions before the “$” (x1, y1), then compute the values for the actions following the “$” (x2, y2),

using x1 and y1 in place of x and y. Finally, we assign the last values (x2 and y2) to x and y:

rule Rswap&sub: when (true) =>
 // initialize x0 and y0
 let
 x0 = x;
 y0 = y;
 // swap if the swap predicate is true
 x1 = ((x0 < y0) & (y0 != 0)) ? y0 : x0;
 y1 = ((x0 < y0) & (y0 != 0)) ? x0 : y0;
 // subtract if the sub predicate is true
 x2 = ((x1 >= y1) & (y1 != 0)) ? x1 – y1 : x1;
 y2 = ((x1 >= y1) & (y1 != 0)) ? y1 : y1;
 // update the registers
 in
 x := x2;

 y := x2;

This rule does not contain a “$”, but simply a set of combinational assignments (to xi’s

and yi’s) and two actions (writes to x and y). Thus, this rule is no different from the types of

rules we have discussed in previous chapters and could be compiled together with other rules

using the previously described rule synthesis. It should also be clear that it behaves exactly like

the composed rule that contained the “$”.

Thus, if rules only interact with primitive registers, we can construct rules that

implement many subsequences of rule composition by first creating composite rules that

contain conditional actions and then removing the conditional actions via a renaming step. In

the next subsection we show how we can use these styles of rules to satisfy scheduling

constraints.

5.1.3 Performance constraints

The goal in this chapter is to allow a designer to specify a set of rules that should be scheduled

together if their guards are true. Additionally, we will show that it is important for the designer

to be able to specify in what sequential order the rules should appear to execute. This

92

subsection shows how constraints are specified and how they can be directly translated into

conditional actions.

An example of a constraint for the GCD program is shown below:

Rswap < Rsub

This constraint specifies that Rswap and Rsub should both execute within a cycle if their guards

are true and that it should appear as though Rswap executes first. If only one of the rules is

enabled, then that rule should execute.

More generally, we can specify constraints for multiple rules. Each such guarantee

(ARPG—Arvind Rosenband Performance Guarantee) takes the following form:

ARPGs ::= [ARPG]

ARPG ::= <Performance Group> “<”
 <Performance Group> “<”
 …

Performance Group ::= {Ra, Rb, Rc, …}

Figure 5-1: ARPG syntax

A design can contain multiple performance guarantees and we refer to each set

{Ra, Rb, …} within a guarantee as a performance group. Although not a strict requirement, to

facilitate better understanding of what these constraints mean we will assume that all the rules

and methods in a performance group are either pair-wise ME or CF.

The idea behind the guarantee is that after transforming the design, all rules (methods)

in the guarantee can be scheduled together. Additionally, if performance group Si appears

before Sj in the guarantee, then any enabled rule (method) from Si will appear to execute before

any enabled rule (method) in Sj. Also, as mentioned earlier, all subsets of rules within a

performance guarantee should execute, even if other rules in the guarantee are not enabled.

It turns out that we can transform ARPG’s directly into conditional actions. Suppose

we are given a set of rules R1, R2, R3, etc:

rule R1: when (p1) => a1;
rule R2: when (p2) => a2;
rule R3: when (p3) => a3;

Then, we can directly translate any constraint:

93

R1 < R2 < R3 < …

into a sequential rule:

rule R1,2,3: when (True) =>
 R1;
 $
 R2;
 $
 R3;
 $
 …

These rules satisfy the “sequential” and “subset” scheduling properties—they appear to

execute in the order specified by the ARPG and any subset of rules will execute if enabled.

Thus, given any constraint, we can create a composed rule that satisfies the constraint while

preserving the functionality of the original design. If multiple ARPG’s are provided, we

construct a sequential rule for each one of them. However, the question remains, how to

generate circuits from arbitrary rules that contain sequential actions (“$”’s). We explore this in

the next section for rules that contain method calls to registers only, and extend the ideas to

methods in the following section.

5.2 Transforming composed rules

The definition of “<” in Section 4.2 states that there is no difference between “$” composition

(sequential) and “;” composition (parallel) if the rules satisfy the “<” property:

if P0 < P1 then P0 $ P1 ≡ P0 ; P1

Now suppose P0 and P1 do not satisfy the “<” property. Can we derive P0’ and P1’ such

that (i) P0 $ P1 ≡ P0’ $ P1’ and (ii) P0’ < P1’, and hence P0’ $ P1’ ≡ P0’ ; P1’? If both these

conditions are satisfied, then P0 $ P1 ≡ P0’ ; P1’ must be true and we have shown how to

eliminate the “$” from a rule. We show this in two steps:

(1) We show how to generate P0’ and P1’ if the only method calls in P0 and P1 are

to registers.

(2) We show how to generate P0’ and P1’ if P0 and P1 make calls to arbitrary

interface methods.

94

5.2.1 Composition of rules with only register method calls

In Section 5.1.2 the GCD example demonstrated that via renaming it is possible to transform

two sequential rules into a single conventional rule. Here we show how such a transformation

can be systematically accomplished. The goal is to take a composite rule that contains “$’s”,

and replace it with a functionally equivalent rule where all “$’s” have been removed. This new

rule can then be synthesized using the standard rule-based synthesis algorithms.

The basic idea in this transformation is that we rename state accesses. However, unlike

the renaming process in the previously described GCD example we do not introduce new

rename variables inside each rule. Instead, we rename the method calls that interact with the

state elements (in this section registers only) and rely on the lower-level module to implement

the variable renaming step. As we will see, renaming interface methods instead of the actual

state variables has the advantage that in a module hierarchy a rule does not need to have direct

access to the modules internals to perform renaming.

Below we repeat the composed GCD rule with explicit read and write method calls:

rule Rswap&sub: when (true) =>
 if ((x.read() < y.read()) & (y.read() != 0)) then
 x.write(y.read());
 y.write(x.read());
 $
 if ((x.read() >= y.read()) & (y.read() != 0)) then
 x.write(x.read() - y.read());

Now, suppose we numbered the method calls before the “$” to have index 0, and those after the

“$” to have index 1. (We indicate a method’s index via a superscript.). The resulting rule is

shown below:

rule Rswap&sub: when (true) =>
 if ((x.read0() < y.read0()) & (y.read0() != 0)) then
 x.write0(y.read0());
 y.write0(x.read0());
 $
 if ((x.read1() >= y.read1()) & (y.read1() != 0)) then
 x.write1(x.read1() – y.read1());

This transformation is correct, provided the following conditions are satisfied. These

conditions state that readi and writei behave precisely like the standard register read and write

method calls if no read or write with index other than i is called. They do not say anything

about the relationship of method calls with different indices.

95

1a) r.readi returns the current state of r
1b) r.writei(v) changes r to have the value v
2) r.readi < r.writei

One possible choice of method implementation is to have readi simply call the register

read method, and writei the register write method. Although correct, such a choice of methods

would not accomplish anything since they would not help us eliminate the “$”. Instead, to

eliminate the “$” we need to satisfy the additional conditions for i < j:

3a) r.readi < r.readj
3b) r.readi < r.writej
3c) r.writei < r.readj
3d) r.writei < r.writej

If these conditions are satisfied, then we can eliminate the “$”. The reason this is

possible is that by construction all statements before a “$” have a lower index than the

statements after the “$”. By the above restrictions, this implies that all method calls before the

“$” are “<” the method calls that occur after the “$”. By the theorem in the previous

subsection, we can then eliminate the “$”. To complete the example, we show the resulting

GCD code below:

rule Rswap&sub: when (true) =>
 if ((x.read0() < y.read0()) & (y.read0() != 0)) then
 x.write0(y.read0());
 y.write0(x.read0());
 if ((x.read1() >= y.read1()) & (y.read1() != 0)) then
 x.write1(x.read1() – y.read1());

We can summarize the above transformation algorithm. This procedure eliminates the

“$” from a composite rule that only references registers without altering its behavior:

Given a rule R:

Let $loc be a function that returns the location in the “$”
sequence for each method call. That is, given a $ b $ c $ …,
$loc is defined such that $loc(a) = 0, $loc(b) = 1, etc.

1) foreach method call m.h in R do

 set the index of m.h to $loc(m.h)

2) Remove all $’s from R

Figure 5-2: Method indexing procedure

96

Thus far we have shown how to transform a composite rule into a “normal” rule,

provided that the rule only makes calls to the primitive register element. However, this

transformation relies on a new register state element that satisfies the 7 conditions listed earlier

in this subsection. The next subsection introduces a new state element, the Ephemeral History

Register (EHR), which satisfies these conditions. Once this register has been introduced we

have a complete flow to generate composite rules that interact with registers only. We will then

extend the algorithms to apply to arbitrary method calls.

5.2.2 The Ephemeral History Register (EHR)

The Ephemeral History Register (EHR)[45, 46] is a new primitive state element that supports

the forwarding of values from one rule to another. It is called Ephemeral History Register

because it maintains a history of all writes that occur to the register within a clock cycle. Each

of the values that were written (the history) can be read through one of the read interfaces.

However, the history is lost at the beginning of the next cycle.

The circuit for this new primitive state element is shown in Figure 5-3. As in a

conventional register, each read method returns a value, and each write method has an enable

input signal (en) and a data input value (x).

write1.x

write0.x

read1

read0write0.en

write1.en

D Q

write2.x

write2.en

writen.x

writen.en

read2

read3

readn+1

0

1

0

1

0

1

0

1

Figure 5-3: The Ephemeral History Register

97

It is clear that we can use the EHR in place of a standard primitive register element by

replacing calls to the register read and write methods with calls to the EHR read0 and write0

methods. These interfaces behave exactly as those of a normal register if none of the other

interfaces are being used. Similarly, any pair of methods readi and writei behaves like the

conventional register, provided no other methods are called. In addition, readi does not observe

the value written by writei, and hence readi < writei must hold. Thus, the EHR satisfies the first

three (1a, 1b, and 2) of the conditions in Section 5.2.1 that our new register must satisfy.

The more interesting cases arise when EHR methods with different indices are enabled.

Each readi returns the value written by the writej method, where j satisfies the properties that: j

< i, and no writek for j < k < i is enabled. (As a reminder, if a method is not called, then its

enable signal is always false.) If no such write takes place, then the readi method returns the

current state of the register. With regards to the next state of the register, the write method that

is enabled with the largest index takes precedence over all other writes, that is, it determines the

value of the state element will contain in the next cycle. If no write method is enabled, then the

state does not change. From these observations we can conclude that the EHR satisfies the

remaining four constraints of Section 5.2.1.

For completeness we show the conflict matrix for the EHR in Figure 5-4. This conflict

matrix is not derived by a compiler but provided as a new primitive conflict matrix. However,

rules or methods that interact with the EHR can be synthesized using this conflict matrix in the

modular compilation flow from the previous chapter. (Note: we only provide the conflict

matrix for read and write methods with index 0 and 1. However, it should be clear how this

extends to higher indices. It should also be apparent that the EHR circuit structure can be

extended to include methods with arbitrarily large indices.)

 read0 write0 read1 write1 …

read0 CF < < < …

write0 > EXT < < …

read1 > > CF < …

write1 > > > EXT …

… … … … … …

Figure 5-4: EHR conflict matrix

98

It is also worth noting that the EHR effectively implements renaming via its interface

methods. Given a variable x, we can think of x.read0 as reading x0, x.write0 writing x1, x.read1

reading x1, etc. However, rather than exposing these variables and hence the module’s internals

directly, we accomplish the same effect via renaming of the interface methods.

In summary, using the rule transformation algorithm in Figure 5-2 and the EHR as the

new state element we can generate arbitrary composite rules for rules that interact with registers

only. Next we show how these algorithms can be extended to arbitrary modules.

5.3 Modular composition

The previous sections showed how to compose arbitrary rules that interact with registers only.

This section extends the algorithms to rules and methods that interact with arbitrary interface

methods. The goal is the same as it was with registers: to transform P0 $ P1 into P0’; P1’, by

creating P0’ and P1’ such that they behave individually as P0 and P1, and such that their

relationship is P0’ < P1’. Our approach is to rename method calls (give them an index) and

rewrite the interface methods so that the renamed (indexed) methods satisfy certain

properties—similar to the properties that the EHR read and write methods satisfy. We first

provide properties that the indexed methods must satisfy. We then show that assuming that

these properties hold, that it is straightforward to create the transformed programs P0’ and P1’.

Finally, we present an algorithm for creating the indexed methods and prove that the resulting

methods satisfy the desired properties.

Let us assume that for each module m and all interface methods m.g and m.h, we can

create new interfaces with the following properties:

MP1) m.gi behaves the same as m.g
MP2) m.g * m.h => m.gi * m.hi (where * ∈ {<, >, C, ...})
MP3) m.gi < m.hi+1

The first property (MP1) says that if m.gi is the only method of module m that is

enabled, then it must behave exactly as though the original method, m.g, was enabled. The

second condition (MP2) states that the relationship between any two methods with the same

index (m.gi and m.hi) must be the same as the relationship of the original methods (m.g and

m.h). This means that if any non-conflicting subset of methods with the same index is called,

then the behavior must be exactly the same as the same subset of the original methods.

99

Property MP3 states that if two methods are called where the second methods has a higher

index than the first method, then the behavior must be explainable as the sequential execution

of the two methods such that the lower indexed method appears to execute first. We should

note that these are generalized constraints for the constraints that we imposed on the EHR

implementation in the previous section and in 5.2.1.

Assuming we can construct new interface methods that satisfy the above conditions, we

can safely apply the following transformations to the programs P0 and P1:

T1) Given a program P in which all method calls have the same
index (i):

 Replace every method call in P by a method call with
 index j

T2) Given P0 $ P1 where the index of all method calls in P0 is
 less than the index in P:
 Replace P0 $ P1 by P0; P1

Let us understand why these transformations are valid. Transformation T1 is valid

because of interface method properties MP1 and MP2. By uniformly changing the index of

method calls we do not alter the behavior of a program because (i) the methods themselves do

not change their behavior (MP1), and (ii) simultaneous execution of the newly indexed

methods is explainable as simultaneous execution of the original methods (MP2).

Transformation T2 is explainable by property MP3. If the indices of all method calls in

P0 are less than the indices of the method calls in P1 then by MP3, all method calls in P0 must

be < the method calls in P1. Hence, P0 < P1 must hold. Furthermore, we showed earlier that if

P0 < P1, then P0 $ P1 ≡ P0; P1. Thus, T2 must also be a valid transformation. (Note: since we

assume a tree module call hierarchy, methods of different modules are automatically <.)

Thus, if we could produce indexed methods with the above properties, then we could

transform any composite rule that contains a “$” into an equivalent rule in which the “$” has

been eliminated. Such a rule could then be compiled using the standard rule-based synthesis

algorithms. The procedure to eliminate the “$” is precisely the same procedure we used for the

register only case, see Figure 5-2: we would change all method calls in P0 to be method calls to

methods of index 0 (apply T1), and all method calls in P1 to methods of index 1 (apply T1)—

resulting in P0’ and P1’. Since all indices in P1’ are then higher than those in P0’ we can replace

P0’ $ P1’ by P0’; P1’; (apply T2).

100

Using the above procedure we can eliminate the “$” from any sequential rule. The

only step that remains to complete the algorithm is to show how to generate indexed methods

that satisfy properties MP1, MP2, and MP3. A surprisingly simple procedure can be used to

create the indexed methods:

Procedure to create m.gi from m.g:

Rename all method calls inside method m.gi to be calls to
methods with index i.

Figure 5-5: Method renaming procedure

We can use an inductive proof to show that such renaming satisfies properties MP1,

MP2, and MP3. The proof occurs over modules in the call hierarchy. That is, we show that the

indexing algorithm satisfies the desired properties, provided that the renaming/indexing scheme

satisfies the properties for all methods that the module calls:

Base Case: By design the EHR satisfies the conditions MP1, MP2, and MP3. These

properties are generalized properties of the conditions 1-7 that we used to create the EHR.

Inductive Hypothesis: The properties hold for all interface methods that the methods of

module m call.

Inductive Proof:

We need to show that given the inductive hypothesis that the renaming of module m’s methods

satisfies MP1, MP2, and MP3.

Property MP1: By the inductive hypothesis we know that all methods that m.g calls must

satisfy property MP1 and MP2. Thus, if we call methods of index i rather than the original

index-less methods in m.g, the behavior must not change. Hence, m.gi behaves the same as

m.g.

Property MP2: Suppose m’.a is called in m.g and m’.b is called in m.h. By the inductive

hypothesis we know that all methods that m.g and m.h call must satisfy property MP2. This

means that if we enable m’.a and m’.b simultaneously then the behavior is the same as if we

enable m’.ai and m’.bi simultaneously. Hence the behavior of enabling m.gi and m.hi

101

simultaneously must be the same as enabling m.g and m.h together. This is what property MP2

states.

Property MP3: Suppose m’.a is called in method m.g and m’.b is called in method m.h. By the

inductive hypothesis we know that all methods that m.g and m.h call must satisfy property

MP3. This means that if we enable m’.ai and m’.bi+1 simultaneously then the behavior is the

same as if we executed m.ai and m.bi in sequence. Hence the behavior of enabling m.gi and

m.hi+1 simultaneously must be the same as executing m.g followed by m.h. This is what

property MP3 states.

�

5.4 Performance driven composition algorithm

This section combines the ideas from the previous sections to create an algorithm which

accepts as input a design and performance constraints, and produces as output a derived design

which is functionally equivalent to the original, but is also guaranteed to satisfy the

performance guarantees. This algorithm can be performed by hand or implemented as an

intermediate pass in the Bluespec compilation flow. As defined by the ARPG syntax in Figure

5-1, each scheduling constraint C that is provided as input to this algorithm takes the form

S0 < S1 < S2 < …, where each Si is a set of rules or methods.

As shown in Figure 5-6, the algorithm can be divided into three steps. First we assign a

set of indices to each rule and method that appears in the scheduling constraints—if a rule or

method appears in Si, then we add index i to that rule or method. Unconstrained rules are

assigned index 0. Next we propagate the indices through the module hierarchy. The idea in

this step is that if a rule or method has an index i assigned to it and makes a call to a method

m.h, then the indexed method m.hi will need to be available in the next step—hence, we assign

index i to the method m.h. We continue to propagate these indices through the hierarchy until a

fixed point is reached. The final step creates the indexed rules, methods and local bindings.

This process involves replicating the program component being indexed, and applying a

renaming procedure as described in Figure 5-5. Since we cannot propagate into leaf nodes, we

must also replace all registers with EHR’s so that indexed read and write methods become

available.

102

// note: we abbreviate “all rules, methods, or local
// bindings” as RorMorLB, we abbreviate “all rules or methods”
// as RorM, etc.

PERFORMANCESCHEDULE(C0, C1, …)
0) initialize the set of indices assigned to each rule,

method and local binding to be empty.

 foreach RorMorLB in the design do
 indices[RorMorLB] = ∅;

1) Assign indices to rules, methods and local bindings based

on the constraints. Unconstrained rules are assigned
index 0.

 foreach Ci do
 foreach Sj in Ci do
 foreach rule or method RorM in Sj do
 indices[RorM] = indices[RorM] ∪ j;

 foreach rule R in the design do
 if (indices[R] == ∅) then
 indices[R] = 0;

2) Propagate indices through the module hierarchy

 while a fixed point has not been reached do
 foreach RorMorLB in the design do
 foreach MorLB that RorMorLB references do
 indices[MorLB] = indices[MorLB] ∪ indices[RorMorLB];

3) Create indexed rules, methods, and local bindings

 foreach RorMorLB in the design do
 foreach i ∈ indices[RorMorLB] do
 Create a copy (RorMorLB’) of RorMorLB;
 foreach MorLB referenced in RorMorLB’ do
 replace MorLB with a reference to MorLBi;;

 Replace all reg’s by EHR’s;

Figure 5-6: Performance driven scheduling algorithm

In the next sections we present two examples of how this procedure is applied to

designs. However, from the analysis in the previous sections it should be clear that the

resulting designs always satisfy the desired performance constraints. In addition, none of the

transformations alter the functional behavior of the design. After the transformations have been

performed we can generate the design’s circuit implementation using the modular synthesis

flow from the previous chapter.

103

A final step that can be added to the performance driven scheduling algorithm is a

pruning procedure. The motivation for this step is that the performance driven scheduling

procedure can result in references to EHR methods that are larger than required. For example,

suppose R3, as part of a sequence R0 < R1 < R2 < R3, is the only rule to access a register regonly3.

The algorithm turns regonly3 into an EHR and provides R3 access to it via interfaces read3 and

write3. However, since none of the other rules access the ports 0, 1, or 2 of the register regonly3

it is wasteful to have R3 tap the register at such a high index number. It could simply have

accessed the register through the read0 and write0 interfaces. Thus, we should run the PRUNE

procedure in Figure 5-7 after running the PERFORMANCESCHEDULE algorithm. (Note: we do

not perform PRUNE’s in the examples in the next sections because it convolutes the numbering

that occurs in the PERFORMANCESCHEDULE algorithm.)

PRUNE() =
 foreach EHR (r) in the design do
 while (ports in r can be pruned) do
 if r.readi is used and r.writei-1 is unused then
 change the use of r.readi to r.readi-1
 if r.writei is used and r.readi is unused
 and r.writei-1 is unused then
 change the use of r.writei to r.writei-1

Figure 5-7: PRUNE procedure

5.5 Specifying schedules for a pipelined processor

This section demonstrates the power of the performance scheduling algorithm via a 4-stage

pipelined processor. We use a simple processor with only two instructions: Add and Jz

(branch on zero). These instructions contain the interesting scheduling issues that arise in a

larger processor. However, by using only two instructions we can focus on the scheduling

problems rather than the details of each instruction.

We show the processor pipeline code in Figure 5-8 and a processor pipeline diagram in

Figure 5-9. The processor stages are connected by FIFO buffers bF, bD and bE. In addition to

the usual enq, deq, clear, and first methods, the bD and bE FIFO’s also provide a bypass

method to search the FIFO for a particular destination register and return the associated value.

(Note: bypass returns a pair: matches is true if a match is found; value contains the associated

value if it is found.) The processor has a total of 7 rules: F fetches an instruction and puts it in

104

bF; D_add and D_jz decode the first instruction in bF and fetch the operands either from the

register file or the bypass path and enqueue the decoded instruction into bD; the E rules execute

the first instruction in bD and either enqueue the results in bE or, in case of a branch taken,

clear the fetched instructions from bF and bD; WB writes back the value in the register file.

function stall(src) =
 {matches, value} = bD.bypass(src);
 return matches;

function bypassv(src) =
 {matches, value} = bE.bypass(src);
 if (matches) then
 return value;
 else
 return rf.read(src);

rule F: when (true) =>
 bF.enq(imem[pc]);
 pc := pc + 4;

rule D_add: when (bF.first() == (Add rd ra rb)) &
 (!stall(ra)) & (!stall(rb)) =>
 bD.enq(EAdd rd bypassv(ra) bypassv(rb));
 bF.deq();

rule D_jz: when (bF.first() == (Jz cd addr)) &
 (!stall(cd)) & (!stall(addr)) =>
 bD.enq(EJz bypassv(cd) bypassv(addr));
 bF.deq();

rule E_add: when (bD.first() == (EAdd rd va vb)) =>
 bE.enq(WB rd (va + vb));
 bD.deq();

rule E_jz_taken: when ((bD.first() == (EJz cd av)) &
 (cd == 0)) =>
 pc := av;
 bD.clear();
 bF.clear();

rule E_jz_nottaken: when ((bD.first() == (EJz cd av)) &
 (cd != 0)) =>
 bD.deq();

rule WB: when (true) =>
 rf[bE.first().rd] = rf[bE.first().val]
 bE.deq();

Figure 5-8: 4-stage processor code

105

Figure 5-9: 4-stage processor pipeline

The FIFO code is shown in Figure 5-10. We use the same style FIFO as in Figure 4-2,

except this FIFO contains only a single-element and now also includes the bypass logic.

module FIFO
 // local state definition
 mkReg data0; // contents of FIFO element 0
 mkReg full0; // 1 if FIFO element 0 contains valid
 // data, 0 otherwise
 // interface specification
 method enq(x) =
 full0 := 1;
 data0 := x;
 when (full0 == 0); // to enq, FIFO must no be full

 method deq =
 full0 := 0;
 when (full0 == 1); // to deq, FIFO must not be empty

 method clear =
 full0 := 0;
 when (true); // can be called anytime

 method first =
 return data0; // return the first FIFO element
 when (full0 == 1); // FIFO must contain valid data

 method bypass(src) =
 return {.matches = full & (data0.rd == src),
 .val = data0.val};
 when (true); // FIFO must contain valid data
endmodule

Figure 5-10: Single-element FIFO with bypass

RF

enq1.x
=

Wb IF

bF

Exe

bE

Dec

bD

106

We should recall that the modular rule-based design flow is attractive for this style of

design because it allows us to focus on each pipeline stage without needing to consider what

the other stages are doing at the same time. For example, both the E_jz_taken and F rules

update the pc. However, we can consider each of these rules in isolation. If each rule behaves

correctly, then the execution model ensures that correct behavior will be observed in a system

that includes both rules. Similarly, when we design the FIFO, we can focus on the

implementation of each method and do not need to ask such questions as what happens when

enq and deq are called simultaneously.

Although attractive from a design flow perspective, we saw in the previous chapter that

this pipeline has performance (throughput) problems: The modular synthesis flow determines

that the FIFO enq and deq cannot execute simultaneously. Hence, consecutive pipeline stages

cannot execute within the same cycle. Although still functionally correct, most designers

would be dissatisfied with this result. Now, we can see how performance constraints help solve

this problem.

For this processor to behave as a conventional pipeline, all rules must execute

concurrently when enabled. In addition, an ordering is required such that it appears as though

the WB rule executes followed by the E rules, followed by the D rules, followed by the F rule

in each cycle. Additionally, if any of the stages cannot execute, for example due to a stall

condition, then if possible, the remaining subset of rules should continue to execute. This can

be written as an ARPG as follows:

{WB rule} < {E rules} < {D rules} < {F rule}

There are several reasons this ordering is important. Since we are using a single-element FIFO

as a pipeline stage, a value needs to be dequeued before a new value can be enqueued. Hence,

a rule that dequeues must appear to execute before the rule that enqueues in the previous

pipeline stage. Similarly, the execute rule must appear to execute before the decode rule since

our expectation is that result values can be forwarded from the execute rule to the decode rule

via a bypass path.

If we apply the PERFORMANCESCHEDULE procedure to the processor design with the

above ARPG as the input constraint we obtain a design that behaves with the expected

performance. To better understand this, we walk through part of the procedure’s execution.

The first step assigns indices to all rules that appear in the ARPG. In this case, the WB rule is

assigned index 0, the E rules are assigned index 1, the D rules are assigned index 2, and the F

107

rule is assigned index 3. Next, the indices are propagated through the module hierarchy.

Examining the bE FIFO, we see that the following indices are assigned to its methods. In this

table the first column indicates the method name, the second column contains the index

assigned to it, and the third column shows which rule caused that index number to be assigned

to it.

Method name Index number Who assigned the index?

enq 1 E rules

deq 0 WB rule

clear / /

first 0 WB rule

bypass 2 D rules

After the above indices are propagated into the FIFO methods, and the registers have

been replaced by EHR’s, we obtain the FIFO code shown in Figure 5-11.

module FIFO
 // local state definition
 mkEHR data0; // contents of FIFO element 0
 mkEHR full0; // 1 if FIFO element 0 contains valid
 // data, 0 otherwise
 // interface specification
 method enq1(x) =
 full0.write1(1);
 data0.write1(x);
 when (full0.read1() == 0);

 method deq0 =
 full0.write0(0);
 when (full0.read0() == 1);

 method first0 =
 return data0.read0();
 when (full0.read0() == 1);

 method bypass2(src) =
 return {.matches = (data0.read2().rd == src),
 .val = data0.read2().val};
 when (true);
endmodule

Figure 5-11: bE FIFO

108

If we then apply the modular synthesis algorithm from the previous chapter to this

FIFO we obtain the following conflict matrix. (Note: we use the EHR conflict matrix from

Figure 5-4 in this process.)

 first0 deq0 enq1 bypass2

first0 CF < < <

deq0 > C < <

enq1 > > C <

bypass2 > > > CF

As we expect, by construction all lower indexed methods are < the higher indexed

methods. Most notably, deq0 < enq1 and enq1 < bypass2. These two annotations indicate that

the pipeline stages can now execute concurrently and that the bypass logic observes the latest

value being enqueued into the FIFO. Similar transformations apply to the other FIFO’s and the

register file in the processor. The result is a processor whose pipeline executes with the

expected throughput.

Other schedulers can be applied to the same processor design to obtain interesting

behaviors. For example, if we replace the single-element FIFO with a two-element FIFO, and

apply the following scheduling constraint, we obtain a two-way superscalar processor:

WB < WB < E < E < D < D < F < F

This schedule says write back two instructions one after another, execute two instructions one

after another, decode two instructions one after another and fetch two instructions one after

another—all in one clock cycle. This is precisely the way a two-way superscalar processor is

supposed to function[25]. It should not come as a surprise that if the machine has to actually

behave like a two-way issue machine then it would need more resources. Indeed we would see

that implementing this schedule would require more interfaces on the FIFO’s and register files

and, and more combinational logic to implement two copies of the original rules in each

pipeline stage.

A final processor schedule that could be interesting is shown below:

F < D < E < WB

This schedule transforms the processor into a single cycle (unpipelined) processor. The reason

for this is that the fetch rule would first enqueue a value into the bF FIFO. The decode rule

109

would then dequeue the value (within the same cycle), process it, and enqueue it into the bD

FIFO. Instructions would continue to “fly” through the pipeline until they are written back in

the WB stage.

Thus far we have shown how we to transform a processor pipeline to satisfy different

scheduling and throughput requirements using the PERFORMANCESCHEDULE algorithm. The

next chapter examines the circuits that result from this procedure and shows that in most cases

they are precisely what the designer expects.

5.6 Mixed rule and method constraints

The previous section showed how to propagate constraints on top-level rules through a module-

hierarchy. This section presents a simple blocking cache design in which we mix constraints

on both methods and rules. As a designer, we like to think of the cache problem as discreet

events as shown in Figure 5-12: 1) we receive a cache request, 2) we check the cache to see if

there is a hit or miss—if there is a hit we enqueue the result into the reply queue, otherwise

send a request to the main memory, 3) accept the memory reply if required, and 4) return the

result.

Figure 5-12: Cache block diagram

Rule-based design allows us to write each of these events as its own method or rule.

This is shown in Figure 5-13. This code hides many of the logic details, for example we

assume a cachehit function exists which returns true if a given address hits in the cache.

However, all these functions are purely combinational.

$
Memory
(SRAM)

Main
Memory

1

2

4

2

2

3

cache request (req)

hit

cache response (rep)

miss

Mem request

Mem reply

Cache

110

If we synthesize this design without performance constraints, a cache hit requires three

cycles (step 1, 2, and 4). This might be acceptable, or even the desired behavior. However,

some designs might require a single cycle cache-hit performance. In a conventional flow this

would require a redesign of the block. However, using performance constraints, we can

transform the pipelining such that the stages are removed if a cache hit occurs. The constraint

that achieves this effect is:

cache_req < {hit, miss} < cache_resp

In this case we have mixed scheduling of rules and interface methods. Furthermore, we have

scheduled rules to appear to execute in between two methods calls. As pointed out in Section

4.6, this can be dangerous since we cannot always guarantee atomicity if this happens. To

ensure atomicity, we must not allow the methods to be called from a single rule. This can be

accomplished by restricting the relationship between methods to be <R in all cases in which

performance constraints schedule rules in between the methods.

module cache
 FIFO req, resp;
 reg pending; // a blocking cache
 method cache_req(a) = /* step 1 */
 req.enq(a);
 pending := true;
 when (!pending);

 rule hit: when (cachehit(req.first()) => /* step 2 */
 resp.enq(cachelookup(req.first());
 req.deq();

 rule miss: when (cachemiss(req.first()) => /* step 2 */
 mainmem.req(req.first());
 req.deq();

 rule mainmem_resp: when (true) => /* step 3 */
 resp.enq(mainmem.resp());

 method cache_response() = /* step 4 */
 resp.deq()
 pending := false;
 return resp.first();
 when (true);
endmodule

Figure 5-13: Cache code

111

We should note that we could have scheduled the miss rule to occur separately from the “fast-

path”. However, the hit and miss share the result from the cache memory lookup (to determine

if a hit occurs). Thus, it does not make architectural sense to schedule the miss rule separately

from the hit rule.

5.7 Generalizations

Several interesting generalizations of the performance guarantee language (ARPG’s) and

associated scheduling algorithms are possible. Most of these are concerned with how to

specify and compile designs that contain multiple performance guarantees.

Thus far, our algorithms simply state that separate composite rules should be generated

for each constraint (ARPG). If the rules in one ARPG conflict with the rules in another ARPG,

then Hoe and Arvind’s scheduler will choose a maximal subset of rules (conditional actions)

from each ARPG. For example, suppose rules R2 and R3 conflict, ARPG0 is R1 < R2, and

ARPG1 is R3 < R4. The scheduling algorithms presented in this chapter will ensure that the

ARPG’s are satisfied, however they do not specify what should happen if for example all four

rules’ predicates are simultaneously true. Should R1, R2 and R4 execute or should R1, R3 and R4

execute? Either case is valid and satisfies the ARPG’s. However, the designer does not have

direct control over this scheduling process. We view this as a second order schedule

specification problem. However, a richer language to also specify such constraints would be

nice.

Another generalization is that each ARPG performance group could contain arbitrary

rules or methods. In Section 5.1.3 we stated that each such group should only contain ME of

CF rules and methods. The motivation for this restriction was that we did not want to introduce

a separate scheduler for each performance group. However, we could allow arbitrary rules in

each group and then use Hoe and Arvind’s scheduler to choose which rules in each

performance group should execute.

5.8 Chapter summary

We have described a method that allows a designer to specify performance constraints by

indicating which rules should execute each cycle and in what order they should appear to

112

execute in. As we have shown, this flow adds flexibility to the design environment by allowing

the designer to easily restructure pipelines. We leveraged previous research on design

transformation through rule composition to ensure that these transformations do not alter the

design’s functionality.

We demonstrated the power of the new scheduling algorithms via several examples,

most notably a processor pipeline and the FIFO to implement the pipeline stages. We showed

that using performance specifications the pipeline can achieve the expected performance. This

required the FIFO to be rescheduled such that simultaneous enqueue and dequeue are allowed,

and that the value being enqueued can be forwarded to the bypass logic. This was not possible

in previous design flows for guarded atomic actions. We also showed that by only changing

the performance specification the same processor design could be transformed into a

superscalar design or an unpipelined design.

Overall, we believe this flow combines the positive attributes of rule-based design, that

is, decoupled specification, with the power the designer expects to ensure correct performance.

113

Chapter 6

Circuit and Performance Evaluation

The previous chapter introduced a scheduling algorithm that transforms designs to satisfy user-

specified performance constraints (ARPG’s). This chapter analyzes the circuits that are

generated in this compilation flow and presents quantitative results to show that the

transformations truly result in the designs we expect—for example that the superscalar

processor constraint produces a processor that executes two instructions per cycle.

The chapter contains three main sections. We first examine the FIFO circuit that

results from the processor performance constraints and show that it corresponds to precisely the

same circuit a designer would have created in a traditional RTL design flow. We then analyze

circuit implications for designs that contain multiple performance constraints and introduce a

slightly modified EHR to improve performance for such cases. The chapter’s last main section

analyzes the GCD circuits and processors that result from various performance guarantees. We

study the resulting area, cycle time, cycle count, and overall performance for a small

benchmark. These results show that many micro-architectures can rapidly be explored by

simply changing a design’s performance specifications. In addition, we argue that in most

cases the cycle time is near optimal. For those cases in which the cycle time does not match

our expectations, we show that through small design and circuit generation optimizations a

nearly optimal design can be obtained.

114

6.1 Pipeline FIFO circuits

This section analyzes the FIFO’s that are generated during processor synthesis with

performance constraints. We argue that a single-element FIFO turns into a single pipeline

register with the control structure that a designer would have constructed in a traditional RTL

design flow.

Figure 6-1 shows the FIFO circuit that is derived directly from the code in Figure 5-11.

The figure shows the EHR structure for the two state elements (full and data). The interface

signals are labeled with both the EHR interface signal names and the corresponding FIFO

signals that connect to them. (Note: the bypass2 output is generated as a combinational

function of the full and data state. All other signals are directly generated from one of the two

states.)

0

1

0

1
Data
D Q read0 = first0

read2 = bypass2

enq1.en = write1.en

enq1.x = write1.x

0 = write0.en

Figure 6-1: Original FIFO circuit

At first this might appear like a lot of logic for a pipeline stage. However, in the next

few paragraphs we show that much of the logic disappears after pruning and constant

propagation. But first, we highlight several important properties. One important property is

0

1

0

1
Full

D Q read0
 = deq0.rdy

 = first0.rdy

!read1 = enq1.rdy

read2 -> bypass2

enq1.en = write1.en

1 = write1.x

0 = write0.x

deq0.en = write0.en

115

that the enq1.rdy signal depends on the full state and the deq0.en signal. If deq0.en is true, then

enq1.rdy will always be true. Hence, if we dequeue from the FIFO, we can always concurrently

enqueue into the FIFO. Similarly, the bypass2 outputs depend on the current full / data states as

well as the deq0.en and enq1.en signals. If a value is being enqueued into the FIFO, then

bypass2 returns the value being enqueued. Otherwise it returns the value already in the FIFO,

provided of course a valid value is present (full is true). Neither the simultaneous enqueue and

dequeue, nor this type of bypass structure could be safely implemented in rule-based design

without the rule composition algorithm and the EHR register structure. We should also note

that this structure is automatically generated from the performance constraint—the designer

does not manually create the mux structures.

The first optimization to the FIFO circuit appears after pruning (see Figure 5-7). The

read1 and write0 interfaces are unused in the data registers. Hence they can be pruned, resulting

in the circuit shown in Figure 6-2. This data register implementation is optimal—no logic can

be removed from it and its structure is equivalent to the data component of a single register

pipeline stage. (Note: the feedback from Q to D could instead be implemented as a flip-flop

with enable.)

Figure 6-2: Pruned FIFO data register

The full register implementation in Figure 6-1 is optimal if the pipeline is flow

controlled. The decode stage is an example of a pipeline stage that exerts upstream flow

control since the stage can stall due to a data hazard. During a stall no entry is dequeued from

the bF FIFO. Upstream stages must then be flow controlled to prevent overflow of the FIFO

that feeds the decode stage (bF). This in turn means that the fetch stage cannot enqueue a new

value into the FIFO if the decode stage stalls. Hence, the two stage logic is required at the full

register input and more importantly, the enq1.rdy signal depends on the deq0.en signal. The

0

1
Data
D Q read0

 = first0

read1 -> bypass2

enq1.en = write0.en

enq1.x = write0.x

116

dependence of enq1.rdy on deq0.en implies that a combinational path is created for upstream

pipeline stages—one gate per stage. This is not entirely surprising since flow control must be

propagated upstream.

However, not all pipeline stages require flow control. For example, the WB rule will

always execute if the bE FIFO contains a value. Hence, for the WB stage the deq1.en signal is

always equal to the full.read0 state. If we propagate this information along with the constant

inputs through the full register logic we obtain the circuit shown in Figure 6-3. All mux’s at the

register input are optimized away. Most important though, the enq1.rdy signal is optimized to

always equal 1. This implies that the upstream pipeline stages can always enqueue into a

pipeline stage that is not flow controlled. Hence, no combinational control path is created

between pipeline stages that always operate synchronously without flow control. (Note: these

logic optimizations are automatically performed during logic synthesis using a gate-level

synthesis tool such as Synopsys Design Compiler.)

Figure 6-3: No flow control full register (deq.en = deq.rdy)

In summary, the single-element FIFO implementation using EHR’s produces exactly

the circuits that a designer expects. Hand-coded single register pipeline stages will not perform

better as back pressure logic is created only when required.

As a comparison we show the FIFO for a “flow-through” design in Figure 6-4. This

style FIFO is created if we reverse the order of the standard processor pipeline performance

constraints to:

F < D < E < WB

Full
D Q read0

 = deq0.rdy
 = first0.rdy

1 = enq1.rdy

read2 -> bypass2.rdy

enq1.en = write1.en

117

This constraint says to execute the fetch rule, then the decode rule, etc.—all within one cycle.

Hence, we expect instructions to flow through the pipeline and not be registered (we have

transformed the design into an unpipelined design.).

0

1

0

1

Full
D Q read0 -> bypass0

!read1 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

deq2.en = write2.en

0 = write2.x

1 = write1.x

enq1.en = write1.en

0

1* = write0.x

0 = write0.en

0

1

0

1
Data
D Q read0 -> bypass0

read2 = first2

enq1.en = write1.en

enq1.x = write1.x

0 = write0.en

Figure 6-4: Flow-through FIFO circuit

As expected from the performance constraint, this FIFO does not latch a value if enq

and deq are simultaneously enabled—enq sets full to 1, and within the same cycle, but

appearing to occur afterwards, deq sets full to 0.

Similar to the standard pipeline FIFO, these circuits are optimized if we perform

pruning, constant propagation, and the compiler can detect for example that the deq method

will always be enabled when ready. We show the circuit after optimization in Figure 6-5.

118

0

1

Full
D Q read0 -> bypass0

!read0 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

0

1 = write1.x

enq1.en = write1.en

Figure 6-5: Flow-through FIFO circuit optimized (1)

This circuit can be further optimized if we allow constant registers to be eliminated

(most gate-level synthesis flows allow such an optimization). The resulting circuit is shown in

Figure 6-6. Similar optimizations occur on the data register.

0

1

read0 -> bypass0

!read0 = enq1.rdy

read2 = deq2.rdy
= first2.rdy

0

1

enq1.en

1

0

Figure 6-6: Flow-through FIFO circuit optimized (2)

6.2 Multi-constrained modular composition

Our performance driven synthesis algorithm produces correct implementations when multiple

ARPG constraints are specified. However, the resulting circuits can introduce critical paths

that the designer might not have intended. We can illustrate this problem via the processor

example from the previous chapter. A natural constraint for the 4-stage processor is:

WB < {E_jz_nottaken, E_Add} < D < F
WB < E_jz_taken

This constraint states that the non branch taken rules should appear to execute in the usual

order. Since the branch taken rule should only execute with the write back rule (the other

stages are cleared), this part of the constraint is written into a separate ARPG.

If we call the PERFORMANCESCHEDULE procedure with these two constraints as input

we obtain the following indexed methods for the pc register:

119

write1 – due to the E_jz_taken rule
read3 – due to the F rule
write3 – due to the F rule

An example of an unintended combinational path is the pc value produced by the E_jz_taken

rule (write1) being forwarded to the F rule (read3). Although functionally correct, this circuit is

likely to produce a design with unsatisfactory cycle time. The forwarding path might never be

used because a scheduler disallows the E_jz_taken and F rules from executing concurrently, but

the path does exist and hence would be considered as a real timing path during gate level

synthesis. One option is to mark such paths as false paths. Another option is to rely on an

automated false path detection tool. However, false paths generally complicate the gate-level

synthesis and physical design process. Thus, we introduce a slight modification on the EHR

circuit to avoid this problem.

Our solution is based on a notion of “separate” EHR interface groups for each ARPG.

Each interface group allows values to be forwarded among the read and write methods, as is the

case in the conventional EHR. However, we do not allow values to be forwarded from one

group to another. In the processor example above, such grouping results in the following pc

interface method calls. Here we call the first ARPG group a and the second ARPG group b:

write1b – due to the E_jz_taken rule
read3a – due to the F rule
write3a – due to the F rule

To complete this idea, we present a diagram of the split EHR in Figure 6-7. The

priority mux in this circuit is driven by the write enable inputs and gives preference to any

writes on the b interfaces. The scheduling constraints for this register are:

reada0 < writea0 < reada1 < writea1 < reada2 < writea2

readb0 < writeb0 < readb1 < writeb1 < readb2 < writeb2

{reada0, writea0, reada1, writea1, reada2, writea2} < {writeb0,
writeb1, writeb2}

(Note: values are only forwarded from writea* to reada* and from writeb* to readb*, and

not from writea* to readb* or writeb* to reada*. It should be clear that as with the EHR, this

“split” structure can be generated for arbitrary conditional method interfaces.)

120

writea1.x

writea0.x

reada1

reada0

readb0
writea0.en

writea1.en

D Q

writea2.x

writea2.en

reada2

reada3

0

1

0

1

0

1

writeb1.x

writeb0.x

writeb0.en

writeb1.en

writeb2.x

writeb2.en

0

1

0

1

0

1

readb1

readb2

readb3

PRIMUX0

0

0

Figure 6-7: Split EHR

6.3 Processor and GCD evaluation

We evaluated the new synthesis methodology to confirm that it produces functionally correct

results, that the performance meets the designer’s expectations, and that the final circuit quality

remains high. To implement the new flow, we created the EHR state-element in Verilog and

imported it, along with its interface scheduling properties, into Bluespec. We then created the

designs using registers as the only primitive state elements, that is, FIFO’s, RF’s, etc. were

created in Bluespec from registers only. We then transformed the design into a new design

according to the procedure outlined in Chapter 5 and Section 6.2 for each scheduling

requirement. The resulting design was then fed through the Bluespec compiler to produce RTL

Verilog, which was then synthesized using Synopsys Design Compiler to generate area and

timing numbers for the TSMC 0.13µm G process. We generated area and timing numbers for

two different timing constraints to illustrate numbers for both an area and a timing-constrained

synthesis run. We also simulated each design to measure functional performance.

121

The design transformations in the initial run of these experiments were performed by

hand. We have since developed in C/C++ an automated compilation step which accepts a

design specified in a subset of the Bluespec language along with a performance specification as

input. As output, it generates a transformed Bluespec design along with any EHR circuits that

the design requires. We have successfully applied this automated process to the processor

designs as well as several other small examples.

Figure 6-8 shows the results for GCD designs (see Figure 2-2) with 3 different

scheduling constraints. The first design is the original design and does not incorporate any

transformations. The second design composed Rswap < Rsub, and the third design was scheduled

to satisfy the constraint: Rswap < Rsub < Rswap < Rsub. As is expected, as more rules are composed,

fewer cycles are required to compute results. Similarly, the critical path increases as more rules

are composed. In spite of this, for the 5ns constrained synthesis, the two constrained schedules

speedup the GCD execution by 1.06 and 1.98. However, the area of the two constrained

designs increases by 52% and 350% over the baseline unconstrained design. The area increase

may come as a surprise because the 4-way composed rule should not be using 4 times the area

since registers are not replicated and we only increase the number of adders from one to two.

However, because the 4-way composed design is unable to make the timing constraint of 5ns,

its adders are substantially larger than those in the other two designs so as to improve its

timing. (Note: the critical path in the 4-way composed design is 32-bit compare (Rswap)

followed by 32-bit compare and 32-bit add (Rsub), followed by 32-bit compare (Rswap) followed

by 32-bit compare and 32-bit add (Rsub).)

GCD Input Measure No
Constr.

Rswap < Rsub Rswap < Rsub <
Rswap < Rsub

Input 1 Cycles 91 78 39

Input 2 Cycles 117 101 51

10ns constr. Area (µm2) 5221 6479 13705

10ns constr. Timing (ns) 10 10 10

5ns constr. Area (µm2) 5909 9003 26638

5ns constr. Timing (ns) 4.54 5.00 5.3

5ns exe. time ns 472 448 239

5ns speedup 1 1.06 1.98

5ns area inc. 0% 52% 351%

Figure 6-8: GCD results

122

This GCD example may appear trivial, however we were able to generate these

numbers simply by changing the performance constraints and then running the same design

through the tool chain. Even for such a simple example, the effort to manually code each case

in RTL would take more effort to first write and then verify.

Next, we look at a more complex example. Figure 6-9 shows the results for a 4-stage

processor pipeline. This processor has the same pipeline structure as that discussed in Figure

5-9 and Figure 5-8. The major difference is that we have added more instructions so that we

could run simple programs. In addition to an unconstrained design (the traditional Bluespec

flow), we synthesized the designs with the following four schedules, where

E* = contains all the execute rules except for the jump taken rule (E_jz_taken):

Schedule1: WB < E < D < F

Schedule2: WB < E* < D < F
 WB < E_jz_taken

Schedule3: WB < E* < D < F < E_jz_taken

Schedule4: WB < WB < E* < E* < D < D < F < F
 WB < WB < E_jz_taken < E_jz_taken

We had discussed the rational for the ordering in Schedule 1 in the previous chapter.

However, architects usually optimize the branch-taken case differently from the branch-not-

taken case and this is what is reflected in Schedules 2 and 3. In Schedule 2 we exclude the

branch-taken rule from the first performance specification expecting to make the critical path

shorter than Schedule 1 because fetch now cannot observe the branch target in the cycle that the

branch is resolved. This effectively splits the access to the PC between the fetch and branch

resolution stage (see Section 6.2). This eliminates the critical path from Schedule 1 but in turn

should have a slightly higher cycle count since branch taken and fetch cannot execute in the

same cycle. In Schedule 3 we move the branch taken rule to the “end of the cycle”. This

eliminates the critical path from branch-taken through fetch. However, this means that the

branch taken observes the results of the decode stage—effectively we have moved the branch

resolution into the decode stage. Hence the critical path becomes: execute an add instruction,

bypass it into the decode stage and compare it with 0 to see if the branch is taken. This is a

long critical path, but is a design used in many processors. Finally Schedule 4 is the 2-way

superscalar version of Schedule 2.

123

Figure 6-9: 4-stage processor results

We synthesized the designs using one and two-element FIFO’s as pipeline stages since

a two-element FIFO is required for a superscalar implementation to perform well. A simple

benchmark loop with arithmetic operations and conditional branches was run on all designs.

Although this benchmark was very small, it provides an idea of the relative throughput for each

processor pipeline. The execution time can be computed by multiplying the cycle time and the

cycle count. We compute the speedups and overhead by treating the unconstrained Bluespec

schedule with 1-ns timing constrained synthesis and a single-element FIFO as the base case.

Component Propagation Delay

32 bit addition 0.9ns

32 bit increment 0.6ns

32 bit compare to 0 0.6ns

2-1 mux (32 bits wide) 0.3ns

Clk to Output + Setup Time 0.4ns

Figure 6-10: Component delays

As a reference for the timing results, we show timing numbers for some of the key

processor components in Figure 6-10. These numbers are approximate since each synthesis run

Design Bench.
(cycles)

Area
10ns
(µm2)

Timing
10ns
(ns)

Area
1ns

(µm2)

Timing
1ns
(ns)

Exec.
Time
(ns)

Speedup

Area
over-
head

1 element fifo:
No Constr. 18525 24762 5.8 33073 1.6 29640 1.00 0%
Schedule1 9881 25362 7.5 34161 2.2 21738 1.36 3%

Schedule2 11115 25001 6.6 34511 1.9 21119 1.40 4%

Schedule3 9881 25180 8.0 34896 2.6 25691 1.15 6%

Schedule4 11115 25264 6.8 36037 1.9 21119 1.40 9%

2 element fifo:
No Constr. 18525 32240 7.4 39033 1.9 35198 0.84 18%
Schedule2 11115 32535 8.4 47084 2.63 29232 1.01 42%

Schedule4 7410 45296 10.0 62649 4.7 34827 0.85 89%

Schedule4+Fix 7410 40180 9.9 62053 3.0 22230 1.33 88%

124

selects slightly different implementations. However, it is clear that unless we further pipeline

the design, no design can have a cycle time of much less than 1.6ns since we must sequentially

get the decode FIFO output (Clk to Q—about 0.3ns), pass through an adder in the execute stage

(about 0.9ns), pass through at least one level mux (0.3ns) and then satisfy setup time (0.1ns).

As expected, Schedule 1’s total execution time is much better than the unconstrained

implementation because the standard Bluespec compiler can only schedule alternating stages to

execute in each cycle. It shows a speedup of 1.36 with only a 3% increase in the area.

Schedule 2 improves on this by showing a speed up of 1.40 with a 4% increase in the area. We

really did not expect an improvement with Schedule 4 with one-element FIFO’s since a

superscalar design will only function with better throughput if two-element FIFO’s are used!

The area also did not increase for the superscalar one-element FIFO case because the duplicate

rules are optimized away in the compilation phase (Synopsys Design Compiler recognizes that

the logic is never used). We should note that as in the GCD example, these experiments could

be performed just by changing the scheduling specifications; the algorithms we presented

earlier ensure that the correctness of the designs is maintained in this process and that the

designs are transformed to satisfy the scheduling requirements.

The results for two-element FIFO’s in Figure 6-9 show the cycle count improvements

for the superscalar design but also significantly worse clock speeds. The speedup in the best

case is only 1.33. This is partially due to the penalty of clearing the pipeline after each branch

taken is relatively high in the superscalar design. However, somewhat disturbingly, the cycle

time for the superscalar design is more than twice that of the single-element FIFO composed

design (4.7ns vs. 1.9ns). In an optimal implementation we would expect the superscalar design

to have a cycle time of only slightly more than the composed pipeline (about two additional

mux stages, or about 0.6ns). Below we discuss several simple changes we can make to the

circuit generation and the FIFO implementation to reduce the superscalar cycle time from 4.6ns

to 3.0ns (about 0.5ns within optimal). (Note: This is the only design for which we altered code

to improve cycle times—all other designs were directly derived from the original processor

code and transformed using the conditional composition algorithms.)

The first change is a circuit transformation shown in Figure 6-11. This is a simple logic

transformation that Synopsys Design Compiler currently does not perform, but which is easy to

add to the Bluespec compilation. In this case, the Bz1_taken signal is on the critical path. In

the original design (on the left side of the figure) the next PC computation for the second fetch

125

in the superscalar fetch stage cannot be computed until the earlier branch is resolved. By

simply moving logic across the mux we can improve this path.

Figure 6-11: Moving logic across a mux

A more interesting change that had a dramatic impact on the cycle time of the

superscalar design is that we slightly changed the two-element FIFO specification. These

changes do not alter the behavior of the FIFO, but embed high-level knowledge that we have

about the FIFO into its circuits. For example, we know that after dequeueing from the FIFO

twice, it will be empty. Since the write back stage in the superscalar design will always execute

twice if the FIFO contains two valid elements (and once if it contains only one element), the

execute stage does not need to check that the FIFO between the write back and execute stages

is empty. Such a check can add one or two mux’s to the critical path (0.6ns). We can achieve

this effect by rewriting the enq method as follows (the changes to this method are highlighted

in italics):

enq(x) = if (full0 == 0) then
 data0 := x;
 full0 := 1;
 full1 := 0
 else
 data1 := x;
 full1 := 1;
 when ((full1 == 0) || (full0 == 0))

Clearly, these changes do not alter the behavior of the design: We know that if full0 is

0, then full1 is also always 0, so it is safe to add the check of (full0 == 0) to the method’s

implicit condition. Similarly, we can write the value 0 to full1 if the FIFO is empty and we are

enqueueing a value since the value will be placed in the “0” slot. Although these changes do

not change the functionality, they have the impact of allowing constants to be effectively

propagated through the pipeline—for example after this change, the execute stage logic is

+1

Bz1 Taken

New PC

PC + 1 Old PC

+1

Bz1 Taken

New PC

PC + 1 Old PC

+1 ⇒

126

optimized via constant propagation to no longer need to check if the FIFO it is enqueueing in is

full. (In Section 6.1 we showed that such an optimization automatically happens in the single-

element FIFO case. For the two-element FIFO the above changes are required to make the

constants propagate effectively.)

Another example of this type of change is to the FIFO clear method. Again we

highlight the change in italics. Obviously, the data values can have any value after the FIFO is

cleared. However, by setting the data0 value during a clear method call to the value it would

have after a deq, the logic that reads from the FIFO can be optimize: regardless of what the

“first” rule in a stage does (deq or clear), it always moves data1 into data0, so the “second”

rule to execute always knows what the “new” value in data0 will be and hence can directly

look at the data1 register. We illustrate these cases in Figure 6-12. Again, by simply adding

this line of code which clearly does not change FIFO functionality we embed some high-level

knowledge into the design. The result is that a mux stage for one of the FIFO’s is removed

from the critical path. (Note: this optimization works in the processor execute stage where the

“first” execute rule always executes. However, this optimization does not improve timing for

the decode rules because the “first” decode rule might stall.)

clear’ = full0 := 0;
 full1 := 0;
 data0 := data1;
 when (true)

data1 = y

data0 = x 1

1 data1 = y

data0 = y 0

0data1 = y

data0 = y 1

0 data1 = y

data0 = x 0

0

Original state State after deq State after clear State after clear’
Figure 6-12: FIFO states after deq and clear operations

These types of changes allowed us to reduce the cycle time from 4.6 to 3.0ns. The

remaining 0.5ns can be obtained through similar changes but they become counterintuitive

since one needs to keep track of when data is available and how mux’s are introduced. Instead,

at that point it would be more reasonable to rewrite the design as a superscalar design. It is

important to recognize that a decision to rewrite the design with “superscalar” in mind is not

due to a short-coming in the synthesis methodology that we present here. As designers we

simply have high-level knowledge that the compiler does not have. Without this knowledge,

127

the compiler must be conservative. An interesting future approach to this work might be to use

user-assertions to guide the compilation process. For example, an assertion could be added that

if FIFO slot “0” is empty, then FIFO slot “1” is also empty. Such assertions would ensure that

the logic is optimized more efficiently.

6.4 Chapter summary

This chapter presented quantitative data that shows that the performance driven synthesis

algorithm works correctly, and in many cases as efficiently as a designer would expect. We

showed that several reasonable processor micro-architectures could be generated by simply

changing the performance constraints. We were somewhat troubled by the dramatic increase in

cycle time for the superscalar design. However, after carefully reviewing the critical paths we

were able to implement specific optimizations for the two-element FIFO which moved the

superscalar design closer to its optimal implementation.

128

129

Chapter 7

Related Work

High level design specification and synthesis is an active area of academic research and

industry development. This chapter reviews some of the work others have performed in this

area. We discuss related work on hardware specification and synthesis using guarded atomic

actions, “traditional” behavioral synthesis, synchronous languages, and processor based

synthesis. The goal in all these approaches is to allow designers to more effectively take

advantage of the tremendous resources that are available in state-of-the-art semiconductors.

7.1 Guarded atomic actions

The idea of using guarded atomic actions to describe distributed systems was developed many

years ago[10, 15, 26, 33, 36, 39] and popularized in[10] via the UNITY programming

language. More recently, guarded atomic have been used in the hardware domain. Initial

successes arose in the area of hardware verification, for example Dill’s Murphi[16] system

allowed cache coherence protocols to be verified. Initial work on hardware design

specification and synthesis using guarded atomic actions was performed in Staunstrup’s

Synchronous Transactions[51], Sere’s Action Systems[43], and Arvind and Shen’s TRS’s[3].

These systems used basic processor pipelines to demonstrate the practicality of their

130

approaches. However, Arvind and Shen’s research focused on more complex designs such as

reorder buffers[3] and cache coherence protocols[50, 52]. Staunstrup also demonstrated

synthesis capabilities but the amount of concurrency he was able to derive among rules was so

limited to make his system impractical for realistic hardware design.

Hoe and Arvind were the first to show that sufficient parallelism can be found among

rules to make hardware synthesis from guarded atomic actions practical[27-29]. They assumed

a flat design environment in which each rule can interact with registers, FIFO’s, and register

files. Using such a system they demonstrated that many designs can be efficiently

implemented using guarded atomic actions. Their work constitutes the foundation for much of

research presented in this thesis.

More recently, larger scale design exploration and more sophisticated synthesis systems

have been introduced. More advanced processors have been synthesized and simulated[11-13,

48, 57], and current effort’s in Arvind’s group are underway to develop a full-blown PowerPC

simulation and synthesis environment. A dramatic advance in synthesis robustness is due to

the commercial development of the Bluespec language and synthesis tool[4, 8]. Interesting

research is also being conducted to merge ideas from synchronous languages with

Bluespec[40], and to make assertions a core part of the Bluespec synthesis environment[42].

Related work on pipeline transformations in a system of guarded atomic actions appears in[37,

38]

7.2 Traditional behavioral synthesis

Traditional behavioral hardware synthesis is based on control-data flow graphs (CDFG’s), and

many projects have successfully transformed and optimized CDFG’s into circuits[18, 23, 30,

32, 44]. The major difference between the CDFG synthesis flows and synthesis from atomic

actions is that CDFG’s focus on generating an efficient static schedule of operations over a

sequence of control steps. In contrast, rule-based synthesis generates a scheduler that

dynamically determines which rules fire in every cycle. We believe dynamic scheduling is

important in hardware systems because many designs have (i) a large number of data

dependent conditional paths, each with its own timing and resource requirements, (2) have

subsystems with variable and unpredictable latencies (due to caching and interference from

other processes, etc.), and (iii) have input events whose timing is often unpredictable. We

131

believe static schedules produce good results for many DSP type applications but are not well

suited for more complicated micro-architectures that combine data-paths with complex control

logic.

Although the motivation is slightly different, we should point out that some of the ideas

in the EHR logic overlap with ideas in CDFG synthesis. For example, chaining is presented

in[18] as a mechanism to improve performance by forwarding the value from one operation to

another without storing an intermediate result. Dynamic renaming is used in[23] to eliminate

data dependencies that limit code motion, and hence allows more aggressive compiler

optimizations to be implemented.

7.3 Other efforts

Synchronous specification languages are another active area of research in hardware

specification. Examples are Esterel[7, 17], Signal[20], and Lustre[9] which were all designed

to deal with real-time issues[6]. Berry[7] and Edwards[17] have presented methods to generate

hardware from Esterel but these efforts have yet to yield high quality hardware in comparison

to synthesis from Verilog RTL.

Another type of research has focused on synthesis of specialized versions of

programmable processors[1, 24, 49, 56]. These efforts are only tangentially related to general

purpose HDLs because the primary focus is on processor issues such as instruction encodings

and the automatic generation of assemblers, compilers, etc. Several companies, most notably

Tensilica Inc, and more recently Stretch Inc., have shown that a market for such products

exists. However, many applications continue to require the performance, power, and cost

benefits of the RTL / gate-level solutions we address in this thesis.

Many other projects on high-level synthesis have been worked on. Relevant to the

work in this thesis is the Liberty micro-architectural exploration tool[55], SystemC[21, 41, 53],

and the Scenic design system[34].

132

133

Chapter 8

Summary and Future Work

This thesis presented new synthesis algorithms and design specification constructs that enhance

the designer’s ability to easily express complex architectures. The two main contributions are

(i) a modular synthesis flow that adds semantics to module interfaces, and (ii) a performance

driven synthesis algorithm that allows a designer to specify what portion of a design should

execute concurrently in each cycle and what order these components should appear to execute

in. Both of these contributions have immediate practical benefits in the context of rule-based

design because they substantially improve synthesis times and allow a designer to more easily

ensure that sufficient parallelism is achieved among a design’s rules. In addition, we hope that

the thesis leads to an enhanced design flow in which designers attempt more aggressive

architectures and experiment with micro-architectural alternatives rather than choose

conservative and often wasteful implementations as is all too common these days.

To this end, the modular synthesis flow makes design exploration and re-use easier

than in traditional hardware design by incorporating interface scheduling annotations into the

design specification. These annotations can be compiler-derived or manually inserted, and

indicate how the logic that connects to the module must be scheduled. This eliminates the error

prone process of reading through informal design specifications and searching for the interface

use restrictions. The modular synthesis flow also eliminates the tedium of manual coding of

the scheduling logic that glues logic and modules together. This allows modules to be swapped

134

in and out of a design, for example to evaluate performance / timing tradeoffs, without having

to worry about the connecting logic.

The performance driven synthesis flow ensures that a designer achieves the parallelism

and throughput that are expected. It also allows designers to easily experiment with micro-

architectural alternatives without changing the underlying rules—only the performance

specifications need to change for many of these experiments. We demonstrated several such

examples via a processor pipeline that could be transformed from a pipelined design into an

unpipelined design, a superscalar design, or a pipelined design with alternate branch resolution

logic, simply by changing a one-line performance specification.

In summary, we believe modular rule-based design with performance specification is

an attractive model for design specification and synthesis. We hope this design style is adopted

and leads to interesting, complex, and higher performing designs than is possible with

traditional design methodologies.

8.1 Future work

The two main topics of this thesis that could be further investigated are modular synthesis of

non-tree module call hierarchies and the quality of circuits generated during performance

driven synthesis. Both areas present interesting research problems and solving them would

have immediate practical benefits for the designer.

The reason that modular synthesis of non-tree module call hierarchies is an important

problem to solve is that many designers naturally create non-tree structures. The flow

described in this thesis requires that such hierarchies must be transformed into a tree-structure

via selective merging of modules before modular compilation can be performed. Although this

is an automated process, we do not achieve the full benefits of modular compilation if some

modules have to be merged for the synthesis algorithms to be applicable. An improved

modular compilation flow would accept designs with arbitrary hierarchies and generate logic

for each module individually. Such a flow is likely to require logic in between modules or

global scheduling logic / knowledge—something we were able to avoid in the synthesis flow

for tree hierarchies.

The second important area that deserves further research is the quality of the circuits

generated in the performance driven synthesis flow. As we showed, many of the generated

135

circuits match the circuit quality that optimized hand-generated RTL would produce.

However, as the superscalar transformation illustrated, some constraints lead to sub-optimal

circuits. We showed that through code and circuit modifications the results for the superscalar

designs could achieve nearly optimal performance. However, this was a somewhat

cumbersome process and an automated approach would be preferable.

An automated approach to improving the circuit quality of the performance driven

synthesis results is likely to contain two components. One component simply improves the

gate-level synthesis of circuits. These changes preserve the functionality (next-state values) of

the original design. An example of such a transformation was shown in Figure 6-11. We

believe a small set of such transformations will solve many of the circuit generation issues. If

critical path feedback can be generated during the compilation from rules into RTL, such

transformations could be inserted at the RTL level. Otherwise they can be added during the

RTL to gates synthesis step.

The second approach that improves circuit quality is incorporating a designer’s high-

level knowledge about the design. Allowing a designer to express such knowledge in the form

of assertions and then using these assertions for improved synthesis is an attractive proposition.

Formal verification tools could attempt to prove the assertions and new synthesis algorithms

would use the assertions to generate more efficient circuits. We view this as a challenging

problem but one to likely lead to an improved design experience.

In summary, several approaches for an automated solution to attacking the circuit

quality problems are possible. Although many of the circuits we generate are optimal (or close

to it), we believe this is a very interesting area for future research. The results from such work

are also likely to be applicable to many other high-level synthesis flows where similar problems

are encountered.

Next, we point out two additional areas for future research. We do not view these as

important as the previous two, but they present interesting problems and their solution would

improve the design flow. The first area is to extend the scheduling annotations to incorporate

additional information. Examples of possible extensions are parameter dependent annotations

(for example, if the inputs to two methods are 0, then their annotation is “<”, otherwise “C”), or

annotations that are dependent on the state of the system (for example, a FIFO which has the

enq < deq property if the FIFO is empty, but otherwise satisfies deq < enq). These extensions

require a more dynamic scheduler since annotations are no-longer fixed. However, they allow

a designer to create more flexible designs.

136

Finally, an interesting topic for future research is extending the performance

specification language. Rather than view the performance specification as a set of linear

constraints, we could imagine a language that allows arbitrary (non-cyclic) constraint graphs.

Such constraints are likely to make it easier to specify the desired performance for larger

designs. Clearly, the performance driven synthesis algorithms would have to be modified to

support such constraints but we believe the basic synthesis ideas (the EHR and the numbering

of rules and methods) would remain.

137

Bibliography

1. Aditya, S., Ramakrishna Rau, B. and Kathail, V., Automatic architectural synthesis of

VLIW and EPIC processors. in 12th International Symposium on System Synthesis, (1999),
107-113.

2. Arvind, Nikhil, R.S., Rosenband, D.L. and Dave, N., High-level Synthesis: An Essential
Ingredient for Designing Complex ASICs. in ICCAD, (San Jose, 2004).

3. Arvind and Shen, X. Using term rewriting systems to design and verify processors. Micro,
IEEE, 19 (3). 36-46.

4. Augustsson, L. and others. Bluespec: Language definition, Sandburst Corp., 2001.

5. Baader, F. and Nipkow, T. Term Rewriting and All That. Cambridge University Press,
Cambridge, UK, 1998.

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P. and de Simone, R.
The synchronous languages 12 years later. Proceedings of the IEEE, 91 (1). 64-83.

7. Berry, G. Esterel on hardware. Philos. Trans. Roy. Soc. London (Series A, 339). 87-104.

8. Bluespec, I. Bluespec System Verilog V3.8 Reference Guide, 200 West St, Suite 402,
Waltham, MA 02451, 2005.

9. Caspi, P., Pilaud, D., Halbwachs, N. and Plaice, J.A., LUSTRE: a declarative language for
real-time programming. in Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, (Munich, West Germany, 1987).

10. Chandy, K.M. and Misra, J. Parallel program design : a foundation. Addison-Wesley Pub.
Co., Reading, Mass., 1988.

11. Dave, N. Designing a Processor in Bluespec EECS, Massachusetts Institute of Technology,
Cambridge, 2004.

12. Dave, N., Designing a Reorder Buffer in Bluespec. in MEMOCODE, (San Diego, 2004).

138

13. Dave, N., Ng, M.C. and Arvind, Automatic Synthesis of Cache-Coherence Protocol
Processors Using Bluespec. in MEMOCODE, (Italy, 2005).

14. Dave, N. and Pellauer, M., UNUM: A General Microprocessor Framework Using Guarded.
in Workshop on Architecture Research using FPGA Platforms (WARFP), (San Francisco,
CA, Jan. 2005).

15. Dijkstra, E.W. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18 (8). 453-457.

16. Dill, D.L. The Murphi verification system. in Proceedings of the Eigth International
Conference on Computer-Aided Verification, Springer-Verlag, 1996.

17. Edwards, S.A., High-level Synthesis from the Synchronous Language Esterel. in
Proceedings of the International Workshop of Logic and Synthesis (IWLS), (New Orleans,
Louisiana, 2002).

18. Gajski, D.D. High-level synthesis : introduction to chip and system design. Kluwer
Academic, Boston, 1992.

19. Gajski, D.D. SpecC : specification language and methodology. Kluwer Academic
Publishers, Boston, 2000.

20. Gautier, T., Guernic, P.L. and Besnard, L., SIGNAL: A declarative language for
synchronous programming of real-time systems. in Proc. of a conference on Functional
programming languages and computer architecture, (Portland, Oregon, 1987).

21. Grotker, T. System Design with SystemC. Kluwer Academic Publishers, Norwell, MA,
2002.

22. Gupta, P., Lin, S. and McKeown, N., Routing lookups in hardware at memory access
speeds. in INFOCOM '98. Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, (1998), 1240-1247 vol.1243.

23. Gupta, S., Dutt, N., Gupta, R. and Nicolau, A., SPARK: a high-level synthesis framework
for applying parallelizing compiler transformations. in VLSI Design, 2003. Proceedings.
16th International Conference on, (2003), 461-466.

24. Hadjiyiannis, G., Hanono, S. and Devadas, S., ISDL: An Instruction Set Description
Language For Retargetability. in Proceedings of the 34th Design Automation Conference
(DAC), (1997), 299-302.

25. Hennessy, J.L. and Patterson, D.A. Computer Architecture a Quantitative Approach.
Morgan Kaufman, 1996.

26. Hoare, C.A.R. Communicating sequential processes. Prentice/Hall International,
Englewood Cliffs, N.J., 1985.

27. Hoe, J.C. Operation-centric hardware description and synthesis Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 2000, 139 p.

28. Hoe, J.C. and Arvind Operation-centric hardware description and synthesis. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23 (9). 1277-
1288.

29. Hoe, J.C. and Arvind, Synthesis of operation-centric hardware descriptions. in IEEE/ACM
International Conference on Computer Aided Design (ICCAD), (2000), 511-518.

139

30. Hwang, C.-T., Lee, J.-H. and Hsu, Y.-C. A formal approach to the scheduling problem in
high level synthesis. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 10 (4). 464-475.

31. Kane, G. and Heinrich, J. MIPS RISC Architectures. Prentics-Hall, Inc., 1992.

32. Knapp, D., Ly, T., MacMillen, D. and Miller, R. Behavioral synthesis methodology for
HDL-based specification and validation in Proceedings of the 32nd ACM/IEEE conference
on Design automation ACM Press, San Francisco, California, United States 1995 286-291

33. Lamport, L. Specifying Concurrent Program Modules. ACM Trans. Program. Lang. Syst.,
5 (2). 190-222.

34. Liao, S., Tjiang, S. and Gupta, R., An Efficient Implementation Of Reactivity For
Modeling Hardware In The Scenic Design Environment. in Proceedings of the 34th Design
Automation Conference (DAC), (1997), 70-75.

35. Lis, M.N. Superscalar Processors via Automatic Mircoarchitecture Transformations,
Massachusetts Institute of Technology, Cambridge, MA, 2000.

36. Lynch, N.A. Atomic transactions. Morgan Kaufmann Publishers, San Mateo, Calif., 1994.

37. Marinescu, M.-C. and Rinard, M., High-level specification and efficient implementation of
pipelined circuits. in Design Automation Conference, 2001. Proceedings of the ASP-DAC
2001. Asia and South Pacific, (2001), 655-661.

38. Marinescu, M.-C.V. and Rinard, M., High-level automatic pipelining for sequential circuits.
in System Synthesis, 2001. Proceedings. The 14th International Symposium on, (2001),
215-220.

39. Milner, R. A calculus of communicating systems. Springer-Verlag, Berlin ; New York,
1980.

40. Nordin, G. and Hoe, J.C., Synchronous Extensions to Operation-Centric Hardware
Description Languages. in MEMOCODE, (San Diego, June, 2004).

41. Panda, P.R., SystemC - a modeling platform supporting multiple design abstractions. in
System Synthesis, 2001. Proceedings. The 14th International Symposium on, (2001), 75-80.

42. Pellauer, M., Lis, M., Baltus, D. and Nikhil, R., Synthesis of Synchronous Assertions with
Guarded Atomic Actions. in MEMOCODE, (Verona, Italy, July, 2005).

43. Plosila, J. and Sere, K., Action systems in pipelined processor design. in Proceedings Third
International Symposium on Advanced Research in Asynchronous Circuits and Systems,
(1997), 156-166.

44. Raghunathan, A. and Jha, N.K., Behavioral synthesis for low power. in Computer Design:
VLSI in Computers and Processors, 1994. ICCD '94. Proceedings., IEEE International
Conference on, (1994), 318-322.

45. Rosenband, D.L., The Ephemeral History Register: Flexible Scheduling for Rule-Based
Designs. in MEMOCODE, (2004).

46. Rosenband, D.L. and Arvind, Hardware Synthesis from Guarded Atomic Actions with
Performance Specifications. in ICCAD, (San Jose, 2005).

47. Rosenband, D.L. and Arvind, Modular Scheduling of Guarded Atomic Actions. in
Proceedings of the 41st Design Automation Conference (DAC), (2004).

140

48. Roy, J., High-level Modeling and FPGA Prototyping of Microprocessors. in Internation
Symposium on Field Programmable Gate Arrays (FPGA), (February, 2003).

49. Schliebusch, O., Hoffmann, A., Nohl, A., Braun, G. and Meyr, H., Architecture
implementation using the machine description language LISA. in Proceedings 7th Asia and
South Pacific Design Automation Conference (ASP-DAC), (2002), 239-244.

50. Shen, X. Design and verification of adaptive cache coherence protocols Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 2000, 178 p.

51. Staunstrup, J. and Greenstreet, M.R. From High-Level Descriptions to VLSI Circuits. BIT,
28 (3). 620-638.

52. Stoy, J., Shen, X. and Arvind. Proofs of Correctness of Cache-Coherence Protocols. in
Oliveira, J.N. and Zave, P. eds. Formal Methods Europe, Springer-Verlag, 2001, 43-71.

53. SystemC Language Working Group. Functional specification for SystemC 2.0.1, 2002.

54. Terese Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003.

55. Vachharajani, M., Vachharajani, N., Penry, D.A., Blome, J.A. and August, D.I.,
Microarchitectural exploration with Liberty. in 35th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-35), (2002), 271-282.

56. Wang, A., Killian, E., Maydan, D. and Rowen, C., Hardware/software instruction set
configurability for system-on-chip processors. in Design Automation Conference (DAC),
(2001), 184-188.

57. Wunderlich, R. and Hoe, J.C., In-System FPGA Prototyping of an Itanium
Microarchitecture. in Internation Conference on Computer Design (ICCD), (October,
2004).

	TTFinalPage1to2.pdf
	memoblank.pdf
	TTFinalPage3to140.pdf

