
Hardware Synthesis from Guarded Atomic Actions with
Performance Specifications

ABSTRACT
We present a new hardware synthesis methodology for guarded
atomic actions (or rules), which satisfies performance-related
scheduling specifications provided by the designer. The
methodology is based on rule composition, and relies on the fact
that a rule derived by the composition of two rules behaves as if
the two rules were scheduled simultaneously. Rule composition is
a well understood transformation in the TRS theoretical
framework; however, previous rule composition approaches
resulted in an explosion of the number of rules during synthesis,
making them impractical for realistic designs. We avoid this
problem through conditional composition of rules which
generates one rule instead of 2n rules when we combine n rules.
We then show how this conditional composition of rules can be
compiled into an efficient hardware structure which introduces
new but derived interfaces in modules. We demonstrate the
approach via a small circuit example (GCD) and then show its
impact on the methodology to implement pipelined processors in
Bluespec. The results show simultaneous improvements in
performance over previous rule-based synthesis approaches and
the ease of expressing several performance-related concepts, such
as bypassing or how branches are dealt with in the pipeline. In a
somewhat surprising result, we show that simply by specifying a
different schedule, one can automatically transform a single-issue
processor pipeline into a superscalar pipeline. Scheduling
specifications for performance opens up a new and rich avenue for
architectural exploration.

1. INTRODUCTION
Some performance guarantees in digital design are as important as
correctness in the sense if they are not met we don’t have an
acceptable design. Suppose we have a pipelined processor which
executes programs correctly but its various pipeline stages cannot
fire concurrently because of some ultraconservative interlocking
scheme. We are unlikely to accept such a design. In the reorder
buffer (ROB) of a modern 2-way superscalar processor, the
designer may not feel that the design task is over until the ROB
has the capability of inserting two instructions, dispatching two
instructions and writing-back the results from two functional units
every cycle[4]. Even simple micro-architectures (and not just
related to processors) can present designers with such
performance-related challenges[1]. It is important to understand
that such requirements emanate from the designer of the micro-
architecture as opposed to some high-level specification of the
design. To that extent, only the designer can provide such
specifications and they should be a core component of any high-
level synthesis flow.

The synthesis framework that our performance specifications
apply to are rule-based languages, e.g., Bluespec. They provide
the designer a simple model to reason with about the correctness
of his/her design and have been quite successful in providing the
designer a methodology and a synthesis tool that eliminates
functional bugs related to complicated race conditions[2]. The

Bluespec synthesis tool has also demonstrated that it generates
RTL that is comparable in quality, i.e., area and time, to hand-
coded Verilog[1, 3].

Bluespec relies on sophisticated scheduling of rules to achieve
these goals. However, when the high-level performance goals of a
designer are not met then an understanding of the schedule
generated by the Bluespec compiler becomes imperative on the
part of the designer before he or she can make improvements.
This can be a challenging process and due to limitations in the
original Bluespec scheduler cannot always be resolved without
reverting to unsafe solutions, such as Bluespec Inc’s RWire.

Recently, Rosenband has shown how a new hardware element, the
Ephemeral History Register (EHR), can be used in place of an
ordinary register to implement scheduling constraints[8] in rule-
based synthesis. This paper improves on this work in three ways:
(i) it presents an algorithm that derives an EHR like hardware
structure for registers and modules based on the semantics of
derived rules that use conditional actions, (ii) it provides a more
general EHR-based synthesis algorithm for modular designs and
designs that require multiple constraints to be satisfied
simultaneously, and (iii) it demonstrates the practicality of the
approach via a careful analysis of the circuits and schedules of a
processor example. These contributions lead to a design
environment which dramatically eases architectural exploration.

Paper Organization: In Section 2, we review the execution
model of guarded atomic actions and introduce the idea of rule
composition. In Section 3, we describe how performance
guarantees may be specified via schedules. We also show how a
new schedule specification may lead to transforming a single-
issue pipeline into a multi-issue superscalar pipeline. Section 4
presents a new synthesis framework that through rule composition
allows the designer to generate high-quality and well-performing
circuits. In Section 5, we report experimental results, which show
that the new synthesis procedure indeed does better than the
current procedure and meets the performance guarantees. We end
with brief conclusions in Section 6.

2. UNDERSTANDING SCHEDULING AS
 RULE COMPOSITION
This section reviews the execution model of atomic actions and
explains scheduling in terms of rule composition.

2.1 Guarded Atomic Action Execution Model
Each guarded atomic action (or rule) consists of a body and a
guard. The body describes the execution behavior of the rule if it
is enabled. The guard (or predicate) specifies the condition that
needs to be satisfied for the rule to be executable. We write rules
in the form:

rule Ri: when πi(s) ==> s := δi(s)

Here, πi is the predicate and s := δi(s) is the body of rule Ri.
Function δi computes the next state of the system from the current
state s. The execution model for a set of such rules is to non-
deterministically pick a rule whose predicate is true and then to

atomically execute that rule’s body. The execution continues as
long as some predicate is true:

 while (some π is true) do
 1) select any Ri , such that πi(s) is true
 2) s := δi(s)

The base-line synthesis approach generates combinational logic
for each rule’s predicate (π) and each rule’s state update function
(δ). A scheduler then chooses one of the rules whose predicate is
true and updates the state with the result of the corresponding
update function (δ). This process repeats in every cycle. Hoe and
Arvind’s synthesis strategy uses more sophisticated scheduling
than the one described above but does it in manner that does not
introduce any new behaviors[6]. It is based on Conflict Free (CF)
and Sequential Composition (SC) analysis of rules. Two rules R1
and R2 are CF if they do not read or write common state. In this
case, whenever enabled, both rules can execute simultaneously
and their execution could be explained as the execution of R1
followed by R2 or vice versa. Two rules R1 and R2 are SC if R1
does not write any element that R2 reads. The synthesis procedure
ignores the updates of R1 on those elements which are also
updated by R2 and generates a circuit that behaves as if R1

executed before R2. One thing to notice is that beyond a possible
MUX at the input to registers concurrent scheduling of CF and
SC rules does not increase the combinational path lengths and
hence the clock cycle of a design.

In many designs aggressive CF and SC analysis is sufficient to
uncover all, or at least the desirable amount of concurrency in rule
scheduling. However, there are situations when one wants to
schedule a rule that may be affected (even enabled) by a previous
rule in the same cycle. Bypassing or value forwarding is a prime
example of such situations; a rule, if it fires, produces a value
which another follow on rule may want to use at the same time the
value is to be stored in some register. Capturing this type of
behavior is beyond CF and SC analysis. We first explain this idea
via rule composition.

2.2 Rule Composition
A fundamental property of TRS’s is that if we add a new rule to a
set of rules it can only enable new behaviors; it can never disallow
any of the old behaviors. Furthermore, if the new rule being added
is a so called derived rule then it does not add any new
behaviors[2, 9]. Given two rules Ra and Rb we can generate a
composite rule that does Rb after Ra as follows:

Ra,b: when (πa(s) & πb(δa(s))) => s := δb(δa(s))

It is straightforward to construct the composed terms πb(δa(s)) and
δb(δa(s)) when registers are the only state-elements and there are
no modules. We illustrate this by the following two rules that
describe Euclid’s GCD algorithm, which computes the greatest
common divisor of two numbers by repeated subtraction:

Rsub: when ((x > y) & (y != 0)) => x := x – y;
Rswap: when ((x <= y) & (y != 0)) => x, y := y, x;

Given these two rules, we can derive a new “high performance”
Rswap,sub rule that immediately performs a subtraction after a swap.
We name the values written by Rswap, as xswap’ and yswap’:

 let xswap’ = y; yswap’ = x; in
 Rswap,sub : when ((x <= y) & (y != 0) &
 (xswap’ > yswap’) & (yswap’ != 0)) =>
 x, y := xswap’ – yswap’, yswap’;

After substitution this rule is equivalent to the following rule:

 Rswap,sub: when ((x <= y) & (y != 0) & (y > x) & (x != 0)) =>
 x, y := y – x, x;

Since the Rswap,sub rule was formed by composition it can safely be
added to the GCD rule system. We can then generate a circuit for
the three rules: Rsub, Rswap and Rswap,sub using CF and SC analysis,
giving preference to the Rswap,sub rule when it is applicable. This
circuit performs better than the original rule system which only
contained Rsub and Rswap since it allows both the swap and
subtraction to occur within a single cycle. (Though the
motivation is different this optimization has similarities with loop
unrolling in behavioral compilers[5].) Without composition, CF
and SC analysis would not have been able to derive this
parallelism and only one of the two rules would have executed
each cycle. (Later, in the evaluation section we discuss the impact
of this rule composition on area, cycle time and overall
performance.)

Mieszko Lis wrote a source-to-source TRS transformation system
to compose rules and applied it to a number of designs including a
pipelined processor[7]. His system produced new rules by taking
a cross product of all the rules in a system and filtered out those
composite rules that were “uninteresting”. Lis’ system was able to
generate all the interesting composite rules and by applying it to a
simple processor pipeline’s rules was able to automatically
generate all the rules for a 2-way superscalar version of the
processor. He was further able to show the robustness of his
transformation (and filtering) by applying the transformation
again to the generated 2-way rules to produce the rules for a 4-
way superscalar micro-architecture. What is fascinating about this
work is that it is based purely on the semantics of TRS’s and does
not use any knowledge specific to processor design.

The biggest problem in exploiting Lis’ transformation is that in
spite of his filtering of “uninteresting” composite rules, the
compiler can generate a large number of new rules. He reports
that the number of rules increased from 13 for the single issue
pipeline to 74 for 2-issue, 409 for 3-issue, 2,442 for 4-issue and
19,055 for 5-issue pipeline[7]! These numbers reflect filtering out
24% to 41% of the possible composite rules. Although interesting
from a theoretical viewpoint, this methodology is clearly not
practical to generate hardware. We will show how to generate
circuits for these thousands of derived rules without actually
having to generate them.

2.3 Composition Using Conditional Actions
We now introduce conditional actions as an alternative method
for rule composition. Conditional actions in rule generation
subsume many natural behaviors of subsequences of rules firing,
thereby dramatically reducing the number of rules that are
generated during composition. Later, in Section 4 we show how
to generate efficient circuits from these rule compositions based
on conditional actions.

An example of the problem that conditional action address is the
Rswap,sub rule that we provided earlier. This rule only covered the
case when both Rswap and Rsub rules were both applicable. As an
alternative, consider the following rule based on conditional
actions, where the meaning of “$” is that the actions following the
“$”see the effect of actions before the “$”.

Rswap&sub: when (True) =>
 if ((x <= y) & (y != 0)) then x, y := y, x; $
 if ((x > y) & (y != 0)) then x := x – y;

With appropriate renaming we can derive the following rule after
eliminating the “$” (x0 and y0 refer to the initial value of x and y,
respectively):

Rswap&sub’: when (True) =>
 x1, y1 = ((x0 <= y0) & (y0 != 0)) ? y0, x0 : x0, y0 ;
 x2, y2 = ((x1 > y1) & (y1 != 0)) ? x1 – y1, y1 : x1, y1;
 x, y := x2, y2

This new rule has the advantage that it behaves as rule Rswap if rule
Rsub does not get enabled; it behaves as rule Rsub if rule Rswap does
not get enabled and behaves as Rswap followed by Rsub if Rswap is
enabled and that in turn does not disable Rsub. Hence, based on
conditional actions, we have generated a single rule that behaves
as three rules using traditional composition. In general, for n
rules, this approach introduces at worst a linear number of
additional rules, whereas traditional composition introduces an
exponential number of new rules during composition.

For circuit generation, the key insight here is that x0, x1, x2, y0, y1,
y2, represent different versions of the state variables x and y within
the same clock period. These versions are related to each other by
cascading conditions and combinational logic which is derived
semantically from the application of the rules chosen for
composition:

x1 = RswapEN ? y0 : x
0;

x2 = RsubEN ? x1 - y1 : x1;
y1 = RswapEN ? x0 : y

0;
y2 = y1;

Rosenband’s Emphemeral History Registers (EHR)[8] provides a
perfect hardware structure to capture this idea. We show the EHR
circuit for the two rule composition case in Figure 1 below.

R2: write1.x

R1: write0.x

R2: read1

R1: read0R1: write0.en

R2: write1.en

D Q

0

1

0

1

Figure 1: Two Rule Composition

The above rule examples only interact with registers. However,
the notion of conditional actions, and hence the EHR style
hardware structure naturally extends to modules and their
interface methods. For example, two interface methods m.g and
m.h are conditional methods that satisfy m.g $ m.h if their
behavior can be explained as (i) m.g if only m.g is enabled, (ii)
m.h if only m.h is enabled, and (iii) m.g followed by m.h if both
methods are enabled.

Before showing how we can generate this style of conditionally
composed modular circuits, we present a more realistic design in
the next section. This will make the challenge of modular
composition and synthesis in the presence of multiple
performance constraints more clear.

3. SPECIFYING SCHEDULES FOR A
 PIPELINED PROCESSOR
Figure 2 shows a 4-stage pipeline for a toy processor which has
only two instructions Add and Jz (Branch on zero). The stages are
connected by FIFO buffers bF, bD and bE. In addition to the

usual enq, deq, clear, and first methods, the bD and bE FIFOs
also provide a bypass method to search the FIFO for a particular
destination register and return the associated value (note: due to
space limitations we do not provide the entire code for the bypass
logic). The processor has a total of 7 rules: F fetches an
instruction and puts it in bF; D_add and D_jz decode the first
instruction in bF and fetch the operands either from the register
file or the bypass path and enqueue the decoded instruction into
bD; the E rules execute the first instruction in bD and either
enqueue the results in bE or, in case of a branch taken, clear the
fetched instructions from bF and bD; WB writes back the value in
the register file. In Figure 3 we give two implementations of the
FIFO, one with a single element and another one which can
contain up to two elements.

For this processor pipeline to work properly, it is important that
the single element FIFO be able to enq and deq in a single cycle,
otherwise at best alternate pipeline stages will operate
concurrently. We also expect that rules that deq a FIFO should
appear to execute before the rules that enq into the same FIFO
(otherwise values could fly through the FIFO without ever getting
latched – clearly not the intent of a pipeline stage). Similarly, for
values to be bypassed from the execute stage to the decode stage
the execute stage rule should appear to take effect before the
decode stage rules fetch their operands. Based on these
observations a designer may want to specify the following
schedule:

Schedule1: WB rule $ E rules $ D rules $ F rule

This schedule says: take a rule each from every group of rules
(e.g. WB, Eadd, D_jz, F) and execute them in one cycle, giving
the effect of WB, followed by E_add, followed by D_jz, followed
by F. It is as if we want to combine all the rules in a particular
order and produce a gigantic rule that makes all the stages move
like a synchronous pipeline. Additionally, if any of the stages
cannot execute, for example due to a stall condition, then if
possible, the remaining subset of rules should continue to execute.
Using conditional rules we will be able to achieve the effect of all
subsets of these rules without actually generating the subset rules.

For the sake of modularity we also want our design to work if we
replace the one-element FIFO’s with the two-element FIFO’s.
Assuming we have a two-element FIFO, consider the following
schedule:

Schedule2: WB $ WB $ E $ E $ D $ D $ F $ F

This schedule says write back two instructions one after another,
execute two instructions one after another, decode two
instructions one after another and fetch two instructions one after
another – all in one clock cycle. This is precisely the way a two-
way superscalar processor is supposed to function. It should not
come as a surprise that if the machine has to actually behave like a
two-way issue machine then it would need more resources. Indeed
we would see that implementing this schedule would require more
interfaces on the FIFO’s and register files and, if sufficient storage
in the form of registers is not provided, the design will result in
modules whose methods may not be enabled properly.

Figure 2: 4-Stage Processor

Figure 3: FIFO Implementations

4. COMPOSITION USING THE EHR
The Ephemeral History Register was introduced by Rosenband to
provide greater control over scheduling of rules [8]. It provides
new scheduling capabilities that cannot be achieved using just SC
and CF analysis. We will first review the EHR’s functionality and
then show how the EHR can be used directly to exploit the new
style of composed rules. The innovative part of the EHR
synthesis scheme is that it actually never generates the composite
rules --- given the specification of a schedule it generates
annotations on each method call and these annotations are further
propagated inside modules until we reach registers, which are
then replaced by EHR’s. Each of these renamed rules corresponds
to one of the conditional actions we have previosuly mentioned.

4.1 The Ephemeral History Register
The Ephemeral History Register (EHR) (see Figure 4) is a new
primitive state element that supports the forwarding of values
from one rule to another. It is called Ephemeral History Register
because it maintains a history of all writes that occur to the
register within a clock cycle. Each of the values that were written
(the history) can be read through one of the read interfaces.
However, the history is lost at the beginning of the next cycle.
We refer to the superscript index of a method as its version or
index. For example, write2 is version 2 of the write method. Each
write method has two signals associated with it: x, the data input
and en, the control input that indicates that the write method is
being called and must execute to preserve rule atomicity. A value
is not written unless the associated en signal is asserted.

It is clear that we can use the EHR in place of a standard primitive
register element by replacing calls to the register read and write
methods with calls to the EHR read0 and write0 methods. These
interfaces behave exactly as those of a normal register if none of
the other interfaces are being used.

4.2 Composition Using EHR
Before explaining how to use the EHR to generate circuits that
behave like composed rules we examine the requirements imposed
by our approach. Suppose we are given rules R1 and R2 and want
to achieve the effect of the composed rule R1,2. We replace rules
R1 and R2 by rules R1’ and R2’ such that rule R1’ behaves the same
as R1 in isolation, i.e. when rule R2’ does not execute (and
similarly for R2’). However, when R1’ and R2’ both execute, then
the behavior of the two rules executing should be the same as that
of R1,2. Clearly, if R1 and R2 do not access common state, then R1’
and R2’ are equivalent to the original rules. However, if they do
access common state, then reads and writes must satisfy the
constraints in Figure 5.

write1.x

write0.x

read1

read0write0.en

write1.en

D Q

write2.x

write2.en

writen.x

writen.en

read2

read3

readn+1

0

1

0

1

0

1

0

1

Figure 4: The Ephemeral History Register

For a given state element with initial value v0, the table specifies
which values the rules must observe when reading the state
element, and what element the state element should take after the
rules have executed. We assume that R1 writes value v1 and R2
writes value v2 (which may be dependent on v1). The table makes
clear that R2’ must observe any values that R1’ writes, and the
final value must reflect the “last” rule that writes it. The last two
table entries correspond to the execution of R1,2.

function stall(src) =
 if (bD.bypass(find_dest, src)) return true;
 else return false;
function bypassv(src) =
 if ((bE.bypass(find_match, (EVal src))) then
 return bE.bypass(find_val, (EVal src));
 else return rf.read(src);
F: when (true) =>
 bF.enq(imem[pc]);
 pc := pc + 4;
D_add: when (bF.first() == (Add rd ra rb)) & (!stall(ra)) & (!stall(rb)) =>
 bD.enq(EAdd rd bypassv(ra) bypassv(rb));
 bF.deq();
D_jz: when (bF.first() == (Jz cd addr)) & (!stall(cd)) & (!stall(addr)) =>
 bD.enq(EJz bypassv(cd) bypassv(addr));
 bF.deq();
E_add: when (bD.first() == (EAdd rd va vb)) =>
 bD.deq();
E_jz_taken: when ((bD.first() == (EJz cd av)) & (cd == 0)) =>
 pc := av;
 bF.clear();
 bD.clear();
E_jz_nottaken: when ((bD.first() == (EJz cd av))&(cd != 0)) =>
 bD.deq();
WB: when (bE.first() == (EVal rd vr)) =>
 rf.write(rd, vr);
 bE.deq()

One Element FIFO:
enq x = data :=x; full := 1; when (full == 0)
deq = full := 0; when (full == 1)
clear = full := 0;
first = return data; when (full == 1)
bypass f v = return f(data, v); when (full== 1)

Two Element FIFO:
enq x = data_1 := x;

 if (full_0 == 0) then data_0 := x;
 full_0 := 1;
 if (full_0 == 1) then full_1 := 1;

 when (full_1 == 0)
deq = full_0 := full_1;
 full_1 := 0;
 data_0 := data_1;
 when (full_0 == 1)
first = return data_0; when (full_0 == 1)

R1’
executes

R2’
executes

R1’
writes

R2’
writes

R1’
reads

R2’
reads

Final
value

Yes No No v0 v0
Yes No Yes v0 v1

No Yes No v0 v0

No Yes Yes v0 v2

Yes Yes No No v0 v0 v0

Yes Yes No Yes v0 v0 v2

Yes Yes Yes No v0 v1 v1

Yes Yes Yes Yes v0 v1 v2

Figure 5: Composition Requirements
We can use EHR’s to satisfy the requirements in Figure 5:

1) Replace all registers accessed by R1 and R2 with EHR’s.
2) Replace all read / write in R1 by calls to read0 / write0.
3) Replace all read / write in R2 by calls to read1 / write1.

The resulting EHR circuit is shown in Figure 1. Each of the rules
R1’ and R2’ execute individually as before. However, when
executing together they exhibit the behavior of the composed rule
R1,2. What makes this possible is that the EHR circuit allows rule
R2’ to observe the values that are written by R1’. When R1’ does
not execute (write0.en is 0), and the EHR returns the current state
of the register to R2’ (read1). However, when R1’ does execute
and writes a value to the register (write0.en is 1), then the value
that the R2’ read interface (read1) returns is the value that was
written by R1’ (write0.x). Such forwarding of values from one rule
to another was not possible before the EHR was introduced.
Effectively we have generated the conditional rule:

R1,2: when (True) =>
 t1 = R1(s);
 t2 = R2(t1);
 s := t2

This procedure can be generalized in a straightforward way to
generate the composition of rules R0, R1, R2, R3, … Rn so that it
appears as if the rules execute in the listed order. In almost all
cases, the designer will also want all subsets of these rules to be
composed in the same order. We can achieve this effect by
replacing all read and write method calls in Ri by calls to readi
and writei and by using a EHR with enough ports. This procedure
works for the same reasons that it works in the case of two rules --
a “later” rule in the composition order observes, via forwarding,
any values that the next earliest rule writes.

4.3 Pruning and Other Optimizations
The above algorithm does not always generate the optimal circuit
(in terms of area and timing). For example, suppose R3, as part of
a sequence R0, R1, R2, R3, is the only rule to access a register
regonly3. The algorithm turns regonly3. into an EHR and provides
R3 access to it via interfaces read3 and write3. However, since
none of the other rules access the ports 0, 1, or 2 of the register
regonly3 it is wasteful to have R3 tap the register at such a high
index number. It could simply have accessed the register through
the read0 and write0 interfaces. Thus, after each call to label the
methods we should also call the PRUNE procedure which
eliminates “gaps” in EHR references:
PRUNE(R0, R1, …, Rn) =

1) access = { regi
 | regi is read or written in one of R0, …, Rn}

2) for i = n downto 0 do
 foreach r ∈access do
 if (r.readi and r.writei are unused) then
 decrement all access r.readj to r.readj-1

 for j > i
 decrement all access r.writej to r.writej-1

 for j > i

4.4 Modular Composition
This section presents a new modular compilation algorithm for
rule based designs. It takes as input a modular design with
scheduling constraints and produces a new design that is
functionally equivalent and is guaranteed to satisfy the scheduling
requirements. Each scheduling constraint C takes the form S0 $ S1
$ S3 $ …, where each Sj is a set of rules. As previously described,
we apply composition to module interface methods the same way
as to rules. This gives us interface methods which can be
composed to satisfy a constraint. Below we present the
PROPCONSTRAINTS algorithm, which transforms the design to
satisfy the constraint C.

PROPCONSTRAINTS(C) =
 mToSched = ∅ ;
 foreach Si ∈ C do /** schedule the rule (methods) in C */
 foreach Rj ∈ Si do
 mToSched = mToSched ∪CREATECOMPOSABLE(Rj, i);
 PRUNE({R | R ∈ C});

 /*** construct interface requirements for modules ***/
 foreach module m ∈ mToSched do
 S0 = ∅ ;S1 = ∅ ;S2= ∅ ; …
 foreach m.gi ∈ mToSched do // compose methods
 Si = Si ∪ m.gi;
 Cm = S0 x S1 …;
 PROPCONSTRAINTS(Cm); // recursively schedule each module

CREATECOMPOSABLE(R, i) =
 mToSched = ∅ ; // set of methods to schedule
 R’ = R; // create a copy of R
 foreach method call m.g in R’ do
 R’ = R’ [m.gi / m.g]; // rename method calls
 // recurs if conditional interfaces are not provided
 if m does not provide conditional interfaces then
 mToSched = mToSched ∪m.gi;
 return mToSched;

4.5 Modular Composition Example
The PROPCONSTRAINTS procedure transforms rules (and methods)
so that they satisfy a scheduling constraint. The procedure creates
conditionally composed module interface methods with new
version numbers and alters rules (and methods) to make calls to
these new methods. This section examines what these version
numbers mean in the context of modules.

As previously mentioned, the scheduling constraint for a 4-stage
processor pipeline, excluding the jump taken rule is:

 WB x {E_add x E_jz_nottaken} x {D_add, D_jz} x F

From these constraints, the PROPCONSTRAINTS procedure derives
the following constraints for the FIFO interface methods:

bF: {first0, deq0} $ enq1
bD: {first0, deq0} $ enq1 $ bypass2

bE: {first0, deq0} $ enq1 $ bypass2

A reasonable jump taken rule constraint is:

WB $ E_jz_taken

From this constraint the PROPCONSTRAINTS procedure derives the
following FIFO interface method constraints:

bF: clear0

bD: first0 $ clear1

bE: {first0, deq0}

Let us first examine what the new FIFO interface means if we
only satisfy one constraint, e.g. {first0, deq0} $ enq1 $ bypass2.
The behavior of the action methods (enq and deq) can be
explained by conditional composition, where ti’s represent the
conditional values that result from the MUX structure:

t-1 = s;
if (m.deq0.en) then t0 = m.deq(s); else t0 = t-1;
if (m.enq1.en) then t1 = m.enq(t0, m.enq1.x); else t1 = t0;
s = t1

The two read methods (first and bypass) return values based on
the temporary variables in this expression:

first0 : return first(t-1);
bypass2: return first(t1);

This new FIFO interface has the effect of performing the
composition of the interface methods if they are simultaneously
enabled, e.g. if first0, deq0, enq1, and bypass2 are all called, then
the behavior is as though first0 and deq0 execute, followed by enq1
(which observes state changes that are made by deq0), followed by
bypass2 (which observes state changes made by both deq and
enq). If only a subset of the methods execute, we still obtain the
correct compositional behavior. For example, if deq0 and bypass2
execute (and not enq1), then bypass2 directly observes the state
that deq0 produces (deq0 produces t0, bypass observes t1, and since
enq is not executing: t1 = t0). Thus, the behavior of a module
interface with a single constraint is clear.

4.6 Multi-Constrained Modular Composition
A final step in giving the designer complete flexibility is to allow
many sequences of rules to be composed. For example, the
designer may want three composition sequences to be generated:
(i) R0, R1, R2; (ii) R2, R3; and (iii) R3, R0. The most
straightforward way to accomplish this is to create copies of rules
that occur in multiple sequences and to then call the
PROPCONSTRAINT procedure on each sequence. After
PROPCONSTRAINT completes we construct a circuit and scheduler
for the design using the normal Bluespec synthesis. This
combines composition sequences as well as rules that were
unconstrained. Although this method always produces correct
circuits, it can introduce critical paths that the designer might not
have intended. We can illustrate this problem via the processor
example from the previous sub-section in which we had one set of
constraints that did not contain the branch taken rule, and one
constraint that does contain the branch taken rule. If we call the
PROPCONSTRAINTS procedure for each constraint and then merge
the resulting interfaces, we obtain the following conditional FIFO
methods:

bF: {first0, deq0, clear0} $ enq1
bD: {first0, deq0} $ {enq1, clear1} $ bypass2

bE: {first0, deq0} $ enq1 $ bypass2

As an example of an unindent combinational path, values might
be passed from clear0 to enq1 in the bF FIFO. Although
functionally correct, this solution could produce a design with
unsatisfactory cycle time. One option is to have a scheduler
disallow both of these methods from being called concurrently,
and marking the path as a false-path. However, an alternate
solution that better fits a conventional synthesis flow exists.

The solution is to produce “separate” interfaces for the different
constraint groups. In the above example, this would result in the
following interfaces:

bF: {firsta0, deqa0} $ enqa1 | clearb0
bD: {firsta0, deqa0} $ enqa1 $ bypassa2 | firstb0 $ clearb1
bE: {firsta0, deqa0} $ enqa1 $ bypassa2 | firstb0 $ deqb0

An example circuit for a register with the following interface is
shown below:

EHR_split: {reada0, writea0} $ {reada1, writea1} $ {reada2, writea2} |
 {readb0, writeb0} $ {readb1, writeb1} $ {readb2, writeb2}

writea1.x

writea0.x

reada1

reada0

readb0
writea0.en

writea1.en

D Q

writea2.x

writea2.en

reada2

reada3

0

1

0

1

0

1

writeb1.x

writeb0.x

writeb0.en

writeb1.en

writeb2.x

writeb2.en

0

1

0

1

0

1

readb1

readb2

readb3

PRIMUX0

0

0

Figure 6: EHR with Split

Note: values are only forwarded from writea* to reada* and from
writeb* to readb*, and not from writea* to readb* or writeb* to
reada*. It should be clear that as with the EHR, this “split”
structure can be generated for arbitrary conditional method
interfaces.

5. RESULTS AND EVALUATION
We evaluated the new synthesis methodology to confirm that it
produces functionally correct results, that the performance meets
the designer’s expectations, and that the final circuit quality
remains high. To implement the new flow we created the EHR
state-element in Verilog and imported it, along with its interface
scheduling properties into Bluespec. We then created the designs
using registers as the only primitive state elements, i.e. FIFO’s,
RF’s, etc. were created in Bluespec from registers only. We then
transformed the design into a new design according to the
procedure outlined in Section 4 for each scheduling requirement.
The resulting design was then fed through the Bluespec compiler
to produce RTL Verilog, which was then synthesized using
Synopsys Design Compiler to generate area and timing numbers
for the TSMC 0.13µm G process. We generated area and timing
numbers for two different timing constraints to illustrate numbers
for an area and a timing-constrained synthesis run. We also
simulated each design to measure functional performance.

Figure 6 shows the results for GCD designs to meet 3 different
scheduling constraints. The first design is the original design and
does not incorporate any transformations. The second design
composed Rswap $ Rsub, and the third design was scheduled to
satisfy the constraint: Rswap $ Rsub $ Rswap $ Rsub. As is expected,
as more rules are composed, fewer cycles are required to compute
results. Similarly, the critical path increases as more rules are
composed. Allowing the same rule to execute multiple times

within a cycle also increases the area, as is seen with the last
constraint since all associated logic needs to be duplicated.

GCD Input Measure No
Constr.

Rswap X
Rsub

Rswap X Rsub X
Rswap X Rsub

Input 1 cycles 91 78 39
Input 2 cycles 117 101 51

10ns constr. Area (µm2) 5221 6479 13705
10ns constr. Timing (ns) 10 10 10

5ns constr. Area (µm2) 5909 9003 26638
5ns constr. Timing (ns) 4.54 5.00 5.3

Figure 7: GCD Results
Figure 8 shows the compilation results for a 4-stage processor
pipeline. In addition to an unconstrained design (the traditional
Bluespec flow), a composed design which behaves like a standard
pipeline (see Schedule 1 in Section 3), and a superscalar design
(see Schedule 2 in Section 3) were studied. For the composed
design we show that it is easy to study the behavior (both cycle
count and cycle time) of different pipelines by simply changing
the design’s schedule. In the case of the superscalar design we
examine why the cycle time at first does not match expectations
and what simple changes can be made to dramatically improve the
performance of the superscalar design.

We synthesized the designs using one and two element FIFO’s as
pipeline stages since a two element FIFO is required for a
superscalar implementation to perform well. A simple benchmark
loop with arithmetic operations and conditional branches was run
on all designs. As a reference we show timing numbers for some
of the key processor components in Figure 9. These numbers are
approximate since each synthesis run selects slightly different
implementations. However, it is clear that unless we further
pipeline the design, no design can have a cycle time of much less
than 1.6ns since we must sequentially get the decode FIFO output
(Clk to Q – about 0.3ns), pass through an adder in the execute
stage (about 0.9ns), pass through at least one level mux (0.3ns)
and then satisfy setup time (0.1ns).

Figure 8: 4-Stage Processor Results
As expected, the unconstrained implementation performs poorly
since the standard Bluespec compiler can only schedule
alternating stages to execute in each cycle. However, the cycle
time is close to optimal. The composed pipeline is more
interesting since it allows us to experiment with several
interesting schedules. Depending on the schedule we choose, we
observe varying cycle counts and cycle times. We should note

that the only change we made to the composed designs during
these experiments is that we changed the scheduling constraints.
We did not change the underlying code. The algorithms we
presented in earlier sections ensure that correctness of the designs
is maintained in this process.

Component Propagation Delay

32 bit addition 0.9ns
32 bit increment 0.6ns

32 bit compare to 0 0.6ns

2-1 MUX (32 bits wide) 0.3ns

Clk to Output + Setup Time 0.4ns

Figure 9: Component Delays
The three composed designs that we examines were: (i) J $ F: the
jump taken appears to execute before the fetch rule. This means
that the fetch rule uses the branch target in the same cycle that the
branch is resolved. The branch resolution followed by fetch
becomes the critical path. (Note: J refers to the branch taken
rule) (ii) D $ F $ J: We move the branch taken rule to the “end of
the cycle”. This eliminates the critical path from jump taken
through fetch. However, this means that the branch taken
observes the results of the decode stage – effectively we have
moved the branch resolution into the decode stage. Hence the
critical path becomes: execute an add instruction, bypass it into
the decode stage and compare it with 0 to see if the branch is
taken. This is a long critical path, but is a design used in many
processors. Finally, another common pipeline design (iii) is J | F:
this is effectively splitting the access to the PC (see section 4.6)
and ensures that fetch and jump do not execute simultaneously
(fetch cannot observe the branch target in the cycle that the branch
is resolved). This eliminates the critical path from the first case
but in turn has a slightly higher cycle count since branch taken
and fetch cannot execute in the same cycle. Clearly there are
trade-offs with all three of these designs. This high-level
scheduling mechanism provides a very simple tool to experiment
with the different pipelines and measure the impacts on cycle time
and cycle count.

As was mentioned earlier, we can apply the same scheduling
algorithms to generate a superscalar design. The results in Figure
8 show that we obtain benchmark cycle count improvements by
switching to the superscalar design. This is expected since in
many cases each stage can execute two instructions per cycle.
However, the performance is only about 33% below that of the
standard composed pipeline (case iii) because the pipeline is
cleared after each branch taken – this has a larger relative penalty
in the superscalar design than in the composed design. Somewhat
disturbingly, the cycle time for the superscalar design is more than
twice that of the single element FIFO composed design (4.7ns vs.
1.9ns). In an optimal implementation we would expect the
superscalar design to have a cycle time of only slightly more than
the composed pipeline (about two MUX stages, or about 0.6ns
worse). Below we discuss several simple changes we can make to
the circuit generation and the FIFO implementation to reduce the
superscalar cycle time from 4.6ns to 3.0ns (about 0.5ns within
optimal). Note: This is the only design for which we altered code
to improve cycle times – all other designs were directly derived
from the original processor code and transformed using the
conditional composition algorithms.

The first change is a simple circuit transformation shown in
Figure 10. This is a simple logic transformation that Synopsys
design compiler currently does not perform, but which is easy to

Design
Bench.
(cycles)

Area
10ns
(µm2)

Timing
10ns
(ns)

Area
1ns

(µm2)

Timing
1ns
(ns)

1 element fifo:

No Constr. 18525 24762 5.8 33073 1.6
Comp J $ F 9881 25362 7.5 34161 2.2

Comp DFJ 9881 25180 8.0 34896 2.6

Comp J | F 11115 25001 6.6 34511 1.9

2 x Super 11115 25264 6.8 36037 1.9

2 element fifo:

No Constr. 18525 32240 7.4 39033 1.9
Comp J | F 11115 32535 8.4 47084 2.63

2 x Super 7410 45296 10.0 62649 4.7

2 x Super+Fixes 7410 40180 9.9 62053 3.0

add to the Bluespec compilation. In this case, the Bz1_taken
signal is on the critical path. In the original design (on the left
side of the figure) the next PC computation for the second fetch in
the superscalar fetch stage cannot be computed until the earlier
branch is resolved. By simply moving logic across the MUX we
can improve this path.

Figure 10: Moving Logic Across a Mux
A more interesting change that had a dramatic impact on the cycle
time of the superscalar design is that we slightly changed the two
element FIFO specification. These changes do not alter the
behavior of the FIFO, but imbed high-level logic that we have
about the FIFO into its circuits. For example, we know that after
dequeueing from the FIFO twice, it will be empty. Since the write
back stage in the superscalar design will always execute twice if
the FIFO contains two valid elements (and once if it contains only
one element), the execute stage does not need to check that the
FIFO between the write back and execute stages is empty. Such a
check can add one or two MUX’s to the critical path (0.6ns). We
can achieve this effect by rewriting the enq method as follows (the
changes to this method are highlighted in italics):

enq x = data_1.write x
 if (full_0 == 0) then data_0 := x;

full_0(1);
if (full_0 == 1) then full_1 := 1;
else full_1 := 0;

 when ((full_1 == 0) || (full_0 == 0))
Clearly, these changes do not alter the behavior of the design: We
know that if full_0 is 0, then full_1 is also always 0, so it is safe to
add the check of (full_0 == 0) to the method’s implicit condition.
Similarly, we can write the value 0 to full_1 if the FIFO is empty
and we are enqueueing a value since the value will be placed in
the “0” slot. Although these changes do not change the
functionality, they have the impact of allowing constants to be
effectively propagated through the pipeline – for example after
this change, the execute stage logic is optimized via constant
propagation to no longer need to check if the FIFO it is
enqueueing in is full.

Another example of this type of change is to the FIFO clear
method. Again we highlight the change in italics. Obviously, the
data values can have any value after the FIFO is cleared.
However, by setting the data_0 value during a clear method call
to the value it would have after a deq, the logic that reads from the
FIFO can be optimize: regardless of what the “first” rule in a
stage does (deq or clear), it always moves data_1 into data_0, so
the “second” rule to execute always knows what the “new” value
in data_0 will be and hence can directly look at the data_1
register. Again, by simply adding this line of code which clearly
doesn’t change FIFO functionality we embed some high-level
knowledge into the design. The result is that a MUX stage for
one of the FIFO’s is removed from the critical path. Note: this
optimization works in the processor execute stage where the
“first” execute rule always executes. However, this optimization

does not improve timing for the decode rules because the “first”
decode rule might stall.

clear = full_0 := 0; full_1 := 0;
 data_0 := data_1;
 when (true)

These types of changes allowed us to reduce the cycle time from
4.6 to 3.0ns. The remaining 0.5ns can be obtained through similar
changes but they become counterintuitive since one needs to keep
track of when data is available and how mux’s are introduces.
Instead, at that point it would be more reasonable to rewrite the
design as a superscalar design. It is important to recognize that a
decision to rewrite the design with “superscalar” in mind is not
due to a short-coming in the synthesis methodology that we
present here. As designers we simply have high-level knowledge
that the compiler does not have. Without this knowledge, the
compiler must be conservative. An interesting future approach to
this work might be to use user-assertions to guide the compilation
process. For example, an assertion could be added that if FIFO
slot “0” is empty, then FIFO slot “1” is also empty.
6. CONCLUSION
We presented a new synthesis algorithm for guarded atomic
actions based on conditional rule composition and analyzed the
efficiency of such an approach on several designs. We leveraged
previous research on design transformation through rule
composition as well as the EHR to create a practical framework
that has a well founded theoretical foundation, but is also practical
in that it eliminates the rule explosion that previously was
required for such transformations. Our algorithms create efficient
implementations that satisfy multiple performance constraints for
both rules and modules. The experimental results show that
interesting architectures can be rapidly generated by simply
changing scheduling constraints. Additionally, many of the
resulting designs have efficient circuits. In the cases where
circuits are non-optimal, the designer can usually use high-level
knowledge to make minor changes to the design to achieve the
expected circuit timing.
7. REFERENCES
[1] Arvind, Nikhil, R.S., Rosenband, D.L. and Dave, N., High-

level Synthesis: An Essential Ingredient for Designing
Complex ASICs. in ICCAD, (San Jose, 2004).

[2] Baader, F. and Nipkow, T. Term Rewriting and All That.
Cambridge University Press, Cambridge, UK, 1998.

[3] Bluespec, Inc., Benchmarking of Bluespec Compiler
Uncovers No Compromises in Quality of Results (QoR)
www.bluespec.com/images/pdfs/InterraReport042604.pdf

[4] Dave, N., Designing a Reorder Buffer in Bluespec. in
MEMOCODE, (San Diego, 2004).

[5] Gupta, S., Dutt, N., Gupta, R. and Nicolau, A., SPARK: a
high-level synthesis framework for applying parallelizing
compiler transformations. in VLSI Design, 2003. Proceedings.
16th International Conference on, (2003), 461-466.

[6] Hoe, J.C. and Arvind Operation-centric hardware description
and synthesis. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 23 (9). 1277-1288.

[7] Lis, M.N. Superscalar Processors via Automatic
Mircoarchitecture Transformations, Massachusetts Institute of
Technology, Cambridge, MA, 2000.

[8] Rosenband, D.L., The Ephemeral History Register: Flexible
Scheduling for Rule-Based Designs. in MEMOCODE, (2004).

[9] Terese Term Rewriting Systems. Cambridge University Press,
Cambridge, UK, 2003.

+1

Bz1 Taken

New PC

PC + 1 Old PC

+1

Bz1 Taken

New PC

PC + 1 Old PC

+1 ⇒

