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ABSTRACT 
We present a new hardware synthesis methodology for guarded 
atomic actions (or rules), which satisfies performance-related 
scheduling specifications provided by the designer. The 
methodology is based on rule composition, and relies on the fact 
that a rule derived by the composition of two rules behaves as if 
the two rules were scheduled simultaneously.  Rule composition is 
a well understood transformation in the TRS theoretical 
framework; however, previous rule composition approaches 
resulted in an explosion of the number of rules during synthesis, 
making them impractical for realistic designs.  We avoid this 
problem through conditional composition of rules which 
generates one rule instead of 2n rules when we combine n rules. 
We then show how this conditional composition of rules can be 
compiled into an efficient hardware structure which introduces 
new but derived interfaces in modules.  We demonstrate the 
approach via a small circuit example (GCD) and then show its 
impact on the methodology to implement pipelined processors in 
Bluespec.  The results show simultaneous improvements in 
performance over previous rule-based synthesis approaches and 
the ease of expressing several performance-related concepts, such 
as bypassing or how branches are dealt with in the pipeline. In a 
somewhat surprising result, we show that simply by specifying a 
different schedule, one can automatically transform a single-issue 
processor pipeline into a superscalar pipeline. Scheduling 
specifications for performance opens up a new and rich avenue for 
architectural exploration. 

1. INTRODUCTION 
Some performance guarantees in digital design are as important as 
correctness in the sense if they are not met we don’t have an 
acceptable design. Suppose we have a pipelined processor which 
executes programs correctly but its various pipeline stages cannot 
fire concurrently because of some ultraconservative interlocking 
scheme. We are unlikely to accept such a design. In the reorder 
buffer (ROB) of a modern 2-way superscalar processor, the 
designer may not feel that the design task is over until the ROB 
has the capability of inserting two instructions, dispatching two 
instructions and writing-back the results from two functional units 
every cycle[4]. Even simple micro-architectures (and not just 
related to processors) can present designers with such 
performance-related challenges[1]. It is important to understand 
that such requirements emanate from the designer of the micro-
architecture as opposed to some high-level specification of the 
design.  To that extent, only the designer can provide such 
specifications and they should be a core component of any high-
level synthesis flow. 

The synthesis framework that our performance specifications 
apply to are rule-based languages, e.g., Bluespec.  They provide 
the designer a simple model to reason with about the correctness 
of his/her design and have been quite successful in providing the 
designer a methodology and a synthesis tool that eliminates 
functional bugs related to complicated race conditions[2]. The 

Bluespec synthesis tool has also demonstrated that it generates 
RTL that is comparable in quality, i.e., area and time, to hand-
coded Verilog[1, 3].  

Bluespec relies on sophisticated scheduling of rules to achieve 
these goals. However, when the high-level performance goals of a 
designer are not met then an understanding of the schedule 
generated by the Bluespec compiler becomes imperative on the 
part of the designer before he or she can make improvements.  
This can be a challenging process and due to limitations in the 
original Bluespec scheduler cannot always be resolved without 
reverting to unsafe solutions, such as Bluespec Inc’s RWire.   

Recently, Rosenband has shown how a new hardware element, the 
Ephemeral History Register (EHR), can be used in place of an 
ordinary register to implement scheduling constraints[8] in rule-
based synthesis. This paper improves on this work in three ways: 
(i) it presents an algorithm that derives an EHR like hardware 
structure for registers and modules based on the semantics of 
derived rules that use conditional actions,  (ii) it provides a more 
general EHR-based synthesis algorithm for modular designs and 
designs that require multiple constraints to be satisfied 
simultaneously, and (iii) it demonstrates the practicality of the 
approach via a careful analysis of the circuits and schedules of a 
processor example.  These contributions lead to a design 
environment which dramatically eases architectural exploration. 

Paper Organization: In Section 2, we review the execution 
model of guarded atomic actions and introduce the idea of rule 
composition.  In Section 3, we describe how performance 
guarantees may be specified via schedules. We also show how a 
new schedule specification may lead to transforming a single-
issue pipeline into a multi-issue superscalar pipeline. Section 4 
presents a new synthesis framework that through rule composition 
allows the designer to generate high-quality and well-performing 
circuits. In Section 5, we report experimental results, which show 
that the new synthesis procedure indeed does better than the 
current procedure and meets the performance guarantees. We end 
with brief conclusions in Section 6. 

2. UNDERSTANDING SCHEDULING AS  
      RULE COMPOSITION 
This section reviews the execution model of atomic actions and 
explains scheduling in terms of rule composition.   

2.1 Guarded Atomic Action Execution Model 
Each guarded atomic action (or rule) consists of a body and a 
guard. The body describes the execution behavior of the rule if it 
is enabled. The guard (or predicate) specifies the condition that 
needs to be satisfied for the rule to be executable. We write rules 
in the form: 

rule Ri:   when πi(s) ==> s := δi(s) 

Here, πi is the predicate and s := δi(s) is the body of rule Ri. 
Function δi computes the next state of the system from the current 
state s. The execution model for a set of such rules is to non-
deterministically pick a rule whose predicate is true and then to 



atomically execute that rule’s body. The execution continues as 
long as some predicate is true: 

        while (some π is true) do 
 1)  select any  Ri , such that πi(s) is true 
 2)  s := δi(s) 

The base-line synthesis approach generates combinational logic 
for each rule’s predicate (π) and each rule’s state update function 
(δ).  A scheduler then chooses one of the rules whose predicate is 
true and updates the state with the result of the corresponding 
update function (δ).  This process repeats in every cycle.  Hoe and 
Arvind’s synthesis strategy uses more sophisticated scheduling 
than the one described above but does it in manner that does not 
introduce any new behaviors[6].  It is based on Conflict Free (CF) 
and Sequential Composition (SC) analysis of rules. Two rules R1 
and R2 are CF if they do not read or write common state.  In this 
case, whenever enabled, both rules can execute simultaneously 
and their execution could be explained as the execution of R1 
followed by R2 or vice versa.  Two rules R1 and R2 are SC if R1 
does not write any element that R2 reads. The synthesis procedure 
ignores the updates of R1 on those elements which are also 
updated by R2 and generates a circuit that behaves as if R1 

executed before R2. One thing to notice is that beyond a possible 
MUX at the input to registers concurrent scheduling of CF and 
SC rules does not increase the combinational path lengths and 
hence the clock cycle of a design. 

In many designs aggressive CF and SC analysis is sufficient to 
uncover all, or at least the desirable amount of concurrency in rule 
scheduling.  However, there are situations when one wants to 
schedule a rule that may be affected (even enabled) by a previous 
rule in the same cycle. Bypassing or value forwarding is a prime 
example of such situations; a rule, if it fires, produces a value 
which another follow on rule may want to use at the same time the 
value is to be stored in some register. Capturing this type of 
behavior is beyond CF and SC analysis.  We first explain this idea 
via rule composition. 

2.2 Rule Composition 
A fundamental property of TRS’s is that if we add a new rule to a 
set of rules it can only enable new behaviors; it can never disallow 
any of the old behaviors. Furthermore, if the new rule being added 
is a so called derived rule then it does not add any new 
behaviors[2, 9]. Given two rules Ra and Rb we can generate a 
composite rule that does Rb after Ra as follows: 

Ra,b:  when (πa(s) & πb(δa(s))) => s := δb(δa(s)) 

It is straightforward to construct the composed terms πb(δa(s)) and 
δb(δa(s)) when registers are the only state-elements and there are 
no modules.   We illustrate this by the following two rules that 
describe Euclid’s GCD algorithm, which computes the greatest 
common divisor of two numbers by repeated subtraction: 

Rsub:   when ((x > y) & (y != 0))      => x := x – y; 
Rswap:  when ((x <= y) & (y != 0))    => x, y := y, x; 

Given these two rules, we can derive a new “high performance” 
Rswap,sub rule that immediately performs a subtraction after a swap. 
We name the values written by Rswap, as xswap’ and yswap’: 

       let xswap’ = y;  yswap’ = x; in 
         Rswap,sub :  when ((x <= y) & (y != 0) & 
                                        (xswap’ > yswap’) & (yswap’ != 0)) =>  
                                 x, y := xswap’ – yswap’, yswap’; 

After substitution this rule is equivalent to the following rule: 

    Rswap,sub:  when ((x <= y) & (y != 0) & (y > x) & (x != 0)) => 
                          x, y  :=  y – x,  x; 

Since the Rswap,sub rule was formed by composition it can safely be 
added to the GCD rule system.  We can then generate a circuit for 
the three rules: Rsub, Rswap and Rswap,sub using CF and SC analysis, 
giving preference to the Rswap,sub rule when it is applicable.  This 
circuit performs better than the original rule system which only 
contained Rsub and Rswap since it allows both the swap and 
subtraction to occur within a single cycle.  (Though the 
motivation is different this optimization has similarities with loop 
unrolling in behavioral compilers[5].)  Without composition, CF 
and SC analysis would not have been able to derive this 
parallelism and only one of the two rules would have executed 
each cycle.  (Later, in the evaluation section we discuss the impact 
of this rule composition on area, cycle time and overall 
performance.)  

Mieszko Lis wrote a source-to-source TRS transformation system 
to compose rules and applied it to a number of designs including a 
pipelined processor[7]. His system produced new rules by taking 
a cross product of all the rules in a system and filtered out those 
composite rules that were “uninteresting”. Lis’ system was able to 
generate all the interesting composite rules and by applying it to a 
simple processor pipeline’s rules was able to automatically 
generate all the rules for a 2-way superscalar version of the 
processor. He was further able to show the robustness of his 
transformation (and filtering) by applying the transformation 
again to the generated 2-way rules to produce the rules for a 4-
way superscalar micro-architecture. What is fascinating about this 
work is that it is based purely on the semantics of TRS’s and does 
not use any knowledge specific to processor design. 

The biggest problem in exploiting Lis’ transformation is that in 
spite of his filtering of “uninteresting” composite rules, the 
compiler can generate a large number of new rules. He reports 
that the number of rules increased from 13 for the single issue 
pipeline to 74 for 2-issue, 409 for 3-issue, 2,442 for 4-issue and 
19,055 for 5-issue pipeline[7]! These numbers reflect filtering out 
24% to 41% of the possible composite rules.  Although interesting 
from a theoretical viewpoint, this methodology is clearly not 
practical to generate hardware.  We will show how to generate 
circuits for these thousands of derived rules without actually 
having to generate them. 

2.3 Composition Using Conditional Actions 
We now introduce conditional actions as an alternative method 
for rule composition. Conditional actions in rule generation 
subsume many natural behaviors of subsequences of rules firing, 
thereby dramatically reducing the number of rules that are 
generated during composition.  Later, in Section 4 we show how 
to generate efficient circuits from these rule compositions based 
on conditional actions. 

An example of the problem that conditional action address is the 
Rswap,sub rule that we provided earlier.  This rule only covered the 
case when both Rswap and Rsub rules were both applicable. As an 
alternative, consider the following rule based on conditional 
actions, where the meaning of “$” is that the actions following the 
“$”see the effect of actions before the “$”. 

Rswap&sub:  when (True)  => 
    if ((x <= y) & (y != 0))  then x, y := y, x; $ 
    if ((x > y) & (y != 0))    then x := x – y;   



With appropriate renaming we can derive the following rule after 
eliminating the “$” (x0 and y0 refer to the initial value of x and y, 
respectively): 

Rswap&sub’:  when (True)  => 
    x1, y1 =  ((x0 <= y0) & (y0 != 0)) ?  y0, x0        : x0, y0 ; 
    x2, y2 =  ((x1 > y1 ) & (y1 != 0))  ? x1 – y1, y1  : x1, y1;  
    x, y  :=   x2, y2 

 

This new rule has the advantage that it behaves as rule Rswap if rule 
Rsub does not get enabled; it behaves as rule Rsub if rule Rswap does 
not get enabled and behaves as Rswap followed by Rsub if Rswap is 
enabled and that in turn does not disable Rsub.  Hence, based on 
conditional actions, we have generated a single rule that behaves 
as three rules using traditional composition.  In general, for n 
rules, this approach introduces at worst a linear number of 
additional rules, whereas traditional composition introduces an 
exponential number of new rules during composition. 

For circuit generation, the key insight here is that x0, x1, x2, y0, y1, 
y2, represent different versions of the state variables x and y within 
the same clock period.  These versions are related to each other by 
cascading conditions and combinational logic which is derived 
semantically from the application of the rules chosen for 
composition: 

x1 = RswapEN   ? y0       : x
0; 

x2 = RsubEN    ? x1 - y1 : x1; 
y1 = RswapEN   ? x0      : y

0; 
y2 = y1; 

Rosenband’s Emphemeral History Registers (EHR)[8] provides a 
perfect hardware structure to capture this idea.  We show the EHR 
circuit for the two rule composition case in Figure 1 below. 
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Figure 1:  Two Rule Composition 

The above rule examples only interact with registers.  However, 
the notion of conditional actions, and hence the EHR style 
hardware structure naturally extends to modules and their 
interface methods.  For example, two interface methods m.g and 
m.h are conditional methods that satisfy m.g $ m.h if their 
behavior can be explained as (i) m.g if only m.g is enabled, (ii) 
m.h if only m.h is enabled, and (iii) m.g followed by m.h if both 
methods are enabled.   

Before showing how we can generate this style of conditionally 
composed modular circuits, we present a more realistic design in 
the next section.  This will make the challenge of modular 
composition and synthesis in the presence of multiple 
performance constraints more clear. 

3. SPECIFYING SCHEDULES FOR A  
      PIPELINED PROCESSOR  
Figure 2 shows a 4-stage pipeline for a toy processor which has 
only two instructions Add and Jz (Branch on zero). The stages are 
connected by FIFO buffers bF, bD and bE. In addition to the 

usual enq, deq, clear, and first methods, the bD and bE FIFOs 
also provide a bypass method to search the FIFO for a particular 
destination register and return the associated value (note: due to 
space limitations we do not provide the entire code for the bypass 
logic).  The processor has a total of 7 rules: F fetches an 
instruction and puts it in bF; D_add and D_jz decode the first 
instruction in bF and fetch the operands either from the register 
file or the bypass path and enqueue the decoded instruction into 
bD; the E rules execute the first instruction in bD and either 
enqueue the results in bE or, in case of a branch taken, clear the 
fetched instructions from bF and bD; WB writes back the value in 
the register file. In Figure 3 we give two implementations of the 
FIFO, one with a single element and another one which can 
contain up to two elements. 

For this processor pipeline to work properly, it is important that 
the single element FIFO be able to enq and deq in a single cycle, 
otherwise at best alternate pipeline stages will operate 
concurrently. We also expect that rules that deq a FIFO should 
appear to execute before the rules that enq into the same FIFO 
(otherwise values could fly through the FIFO without ever getting 
latched – clearly not the intent of a pipeline stage). Similarly, for 
values to be bypassed from the execute stage to the decode stage 
the execute stage rule should appear to take effect before the 
decode stage rules fetch their operands. Based on these 
observations a designer may want to specify the following 
schedule: 

Schedule1:          WB rule $ E rules $ D rules $ F rule 

This schedule says: take a rule each from every group of rules 
(e.g. WB, Eadd, D_jz, F) and execute them in one cycle, giving 
the effect of WB, followed by E_add, followed by D_jz, followed 
by F.  It is as if we want to combine all the rules in a particular 
order and produce a gigantic rule that makes all the stages move 
like a synchronous pipeline. Additionally, if any of the stages 
cannot execute, for example due to a stall condition, then if 
possible, the remaining subset of rules should continue to execute.  
Using conditional rules we will be able to achieve the effect of all 
subsets of these rules without actually generating the subset rules. 

For the sake of modularity we also want our design to work if we 
replace the one-element FIFO’s with the two-element FIFO’s. 
Assuming we have a two-element FIFO, consider the following 
schedule: 

Schedule2:          WB $ WB $ E  $ E  $ D $ D $ F $ F 

This schedule says write back two instructions one after another, 
execute two instructions one after another, decode two 
instructions one after another and fetch two instructions one after 
another – all in one clock cycle. This is precisely the way a two-
way superscalar processor is supposed to function. It should not 
come as a surprise that if the machine has to actually behave like a 
two-way issue machine then it would need more resources. Indeed 
we would see that implementing this schedule would require more 
interfaces on the FIFO’s and register files and, if sufficient storage 
in the form of registers is not provided, the design will result in 
modules whose methods may not be enabled properly.   



 

Figure 2:  4-Stage Processor 

 
Figure 3:  FIFO Implementations 

4. COMPOSITION USING THE EHR 
The Ephemeral History Register was introduced by Rosenband to 
provide greater control over scheduling of rules [8].  It provides 
new scheduling capabilities that cannot be achieved using just SC 
and CF analysis.  We will first review the EHR’s functionality and 
then show how the EHR can be used directly to exploit the new 
style of composed rules.  The innovative part of the EHR 
synthesis scheme is that it actually never generates the composite 
rules --- given the specification of a schedule it generates 
annotations on each method call and these annotations are further 
propagated inside modules until we reach registers, which are 
then replaced by EHR’s. Each of these renamed rules corresponds 
to one of the conditional actions we have previosuly mentioned. 

4.1 The Ephemeral History Register 
The Ephemeral History Register (EHR) (see Figure 4) is a new 
primitive state element that supports the forwarding of values 
from one rule to another. It is called Ephemeral History Register 
because it maintains a history of all writes that occur to the 
register within a clock cycle. Each of the values that were written 
(the history) can be read through one of the read interfaces. 
However, the history is lost at the beginning of the next cycle.  
We refer to the superscript index of a method as its version or 
index.  For example, write2 is version 2 of the write method.  Each 
write method has two signals associated with it:  x, the data input 
and en, the control input that indicates that the write method is 
being called and must execute to preserve rule atomicity.  A value 
is not written unless the associated en signal is asserted.   

It is clear that we can use the EHR in place of a standard primitive 
register element by replacing calls to the register read and write 
methods with calls to the EHR read0 and write0 methods.  These 
interfaces behave exactly as those of a normal register if none of 
the other interfaces are being used.   

4.2 Composition Using EHR 
Before explaining how to use the EHR to generate circuits that 
behave like composed rules we examine the requirements imposed 
by our approach.  Suppose we are given rules R1 and R2 and want 
to achieve the effect of the composed rule R1,2.  We replace rules 
R1 and R2 by rules R1’ and R2’ such that rule R1’ behaves the same 
as R1 in isolation, i.e. when rule R2’ does not execute (and 
similarly for R2’).  However, when R1’ and R2’ both execute, then 
the behavior of the two rules executing should be the same as that 
of R1,2.  Clearly, if R1 and R2 do not access common state, then R1’ 
and R2’ are equivalent to the original rules.  However, if they do 
access common state, then reads and writes must satisfy the 
constraints in Figure 5.   
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Figure 4:  The Ephemeral History Register 

For a given state element with initial value v0, the table specifies 
which values the rules must observe when reading the state 
element, and what element the state element should take after the 
rules have executed.  We assume that R1 writes value v1 and R2 
writes value v2 (which may be dependent on v1).  The table makes 
clear that R2’ must observe any values that R1’ writes, and the 
final value must reflect the “last” rule that writes it.  The last two 
table entries correspond to the execution of R1,2. 

 

 

function stall(src) = 
 if (bD.bypass(find_dest, src))  return true; 
 else                                return false; 
function bypassv(src) = 
 if ((bE.bypass(find_match, (EVal src))) then 
  return bE.bypass(find_val, (EVal src)); 
 else  return rf.read(src); 
F:  when (true) => 
 bF.enq(imem[pc]); 
 pc := pc + 4; 
D_add: when (bF.first() == (Add rd ra rb)) & (!stall(ra)) & (!stall(rb)) => 
 bD.enq(EAdd rd bypassv(ra) bypassv(rb)); 
 bF.deq(); 
D_jz: when (bF.first() == (Jz cd addr)) & (!stall(cd)) & (!stall(addr)) => 
 bD.enq(EJz bypassv(cd) bypassv(addr)); 
 bF.deq(); 
E_add: when (bD.first() == (EAdd rd va vb)) => 
 bD.deq(); 
E_jz_taken: when ((bD.first() == (EJz cd av)) & (cd == 0))  => 
 pc := av; 
 bF.clear(); 
 bD.clear(); 
E_jz_nottaken: when ((bD.first() == (EJz cd av))&(cd != 0)) => 
 bD.deq(); 
WB: when (bE.first() == (EVal rd vr)) => 
 rf.write(rd, vr); 
 bE.deq() 

One Element FIFO: 
enq x  =  data :=x; full := 1;  when (full == 0) 
deq  =  full := 0;                 when (full == 1) 
clear  =  full := 0; 
first         =  return data;        when (full == 1) 
bypass f v  =  return f(data, v);  when (full== 1) 
 
Two Element FIFO: 
enq x  =  data_1 := x; 

     if (full_0 == 0) then data_0 := x; 
     full_0 := 1; 
     if (full_0 == 1) then full_1 := 1;  

                 when (full_1 == 0) 
deq  =  full_0 := full_1; 
     full_1 := 0; 
     data_0 := data_1; 
    when (full_0 == 1) 
first  =  return data_0; when (full_0 == 1) 
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Figure 5:  Composition Requirements 
We can use EHR’s to satisfy the requirements in Figure 5: 

1) Replace all registers accessed by R1 and R2 with EHR’s. 
2) Replace all read / write in R1 by calls to read0 / write0. 
3) Replace all read / write in R2 by calls to read1 / write1. 

The resulting EHR circuit is shown in Figure 1.  Each of the rules 
R1’ and R2’ execute individually as before.  However, when 
executing together they exhibit the behavior of the composed rule 
R1,2.  What makes this possible is that the EHR circuit allows rule 
R2’ to observe the values that are written by R1’.  When R1’ does 
not execute (write0.en is 0), and the EHR returns the current state 
of the register to R2’ (read1).  However, when R1’ does execute 
and writes a value to the register (write0.en is 1), then the value 
that the R2’ read interface (read1) returns is the value that was 
written by R1’ (write0.x).  Such forwarding of values from one rule 
to another was not possible before the EHR was introduced.  
Effectively we have generated the conditional rule: 

R1,2:  when (True)  =>  
     t1 = R1(s);  
     t2 = R2(t1); 
     s := t2 

This procedure can be generalized in a straightforward way to 
generate the composition of rules R0, R1, R2, R3, … Rn so that it 
appears as if the rules execute in the listed order.  In almost all 
cases, the designer will also want all subsets of these rules to be 
composed in the same order.  We can achieve this effect by 
replacing all read and write method calls in Ri by calls to readi 
and writei and by using a EHR with enough ports. This procedure 
works for the same reasons that it works in the case of two rules -- 
a “later” rule in the composition order observes, via forwarding, 
any values that the next earliest rule writes.   

4.3 Pruning and Other Optimizations 
The above algorithm does not always generate the optimal circuit 
(in terms of area and timing).  For example, suppose R3, as part of 
a sequence R0, R1, R2, R3, is the only rule to access a register 
regonly3.  The algorithm turns regonly3. into an EHR and provides 
R3 access to it via interfaces read3 and write3.  However, since 
none of the other rules access the ports 0, 1, or 2 of the register 
regonly3 it is wasteful to have R3 tap the register at such a high 
index number. It could simply have accessed the register through 
the read0 and write0 interfaces.  Thus, after each call to label the 
methods we should also call the PRUNE procedure which 
eliminates “gaps” in EHR references: 
PRUNE(R0, R1, …, Rn) =  

1) access = { regi
 | regi is read or written in one of R0, …, Rn} 

2) for i = n downto 0 do 
  foreach r ∈access do  
      if (r.readi and r.writei are unused) then 
         decrement all access r.readj to r.readj-1

 for j > i 
         decrement all access r.writej to r.writej-1

 for j > i 

4.4 Modular Composition 
This section presents a new modular compilation algorithm for 
rule based designs.  It takes as input a modular design with 
scheduling constraints and produces a new design that is 
functionally equivalent and is guaranteed to satisfy the scheduling 
requirements.  Each scheduling constraint C takes the form S0 $ S1 
$ S3 $ …, where each Sj is a set of rules.  As previously described, 
we apply composition to module interface methods the same way 
as to rules.  This gives us interface methods which can be 
composed to satisfy a constraint. Below we present the 
PROPCONSTRAINTS algorithm, which transforms the design to 
satisfy the constraint C.   

PROPCONSTRAINTS(C) = 
   mToSched = ∅ ;       
    foreach Si ∈ C do    /** schedule the rule (methods) in C  */ 
        foreach Rj ∈ Si do 
             mToSched =  mToSched ∪CREATECOMPOSABLE(Rj, i);    
    PRUNE({R | R ∈ C});     

      /*** construct interface requirements for modules ***/ 
   foreach module m ∈ mToSched do 
        S0 = ∅ ;S1 = ∅ ;S2= ∅ ; … 
        foreach m.gi ∈ mToSched do   // compose methods 
             Si = Si  ∪ m.gi; 
        Cm = S0 x S1 …; 
        PROPCONSTRAINTS(Cm);  // recursively schedule each module 
 

CREATECOMPOSABLE(R, i) =  
     mToSched = ∅ ;                   // set of methods to schedule 
     R’ = R;                                 // create a copy of R 
     foreach method call m.g in R’ do 
          R’ = R’ [m.gi / m.g];          // rename method calls 
          // recurs if conditional interfaces are not provided 
          if m does not provide conditional interfaces then     
             mToSched = mToSched ∪m.gi; 
      return mToSched; 

4.5 Modular Composition Example 
The PROPCONSTRAINTS procedure transforms rules (and methods) 
so that they satisfy a scheduling constraint.  The procedure creates 
conditionally composed module interface methods with new 
version numbers and alters rules (and methods) to make calls to 
these new methods.  This section examines what these version 
numbers mean in the context of modules. 

As previously mentioned, the scheduling constraint for a 4-stage 
processor pipeline, excluding the jump taken rule is: 

  WB x {E_add x E_jz_nottaken} x {D_add, D_jz} x F  

From these constraints, the PROPCONSTRAINTS procedure derives 
the following constraints for the FIFO interface methods: 

bF:  {first0, deq0} $ enq1  
bD:  {first0, deq0} $ enq1 $ bypass2 

bE:  {first0, deq0} $ enq1 $ bypass2 

A reasonable jump taken rule constraint is:   

WB $ E_jz_taken  

From this constraint the PROPCONSTRAINTS procedure derives the 
following FIFO interface method constraints: 



bF:   clear0 

bD:   first0 $ clear1 

bE:   {first0, deq0} 

Let us first examine what the new FIFO interface means if we 
only satisfy one constraint, e.g. {first0, deq0} $ enq1 $ bypass2.  
The behavior of the action methods (enq and deq) can be 
explained by conditional composition, where ti’s represent the 
conditional values that result from the MUX structure: 

t-1 = s; 
if (m.deq0.en) then t0 = m.deq(s); else t0 = t-1; 
if (m.enq1.en) then t1 = m.enq(t0, m.enq1.x); else t1 = t0; 
s = t1 

The two read methods (first and bypass) return values based on 
the temporary variables in this expression: 

first0 :       return first(t-1); 
bypass2:  return first(t1); 

This new FIFO interface has the effect of performing the 
composition of the interface methods if they are simultaneously 
enabled, e.g. if first0, deq0, enq1, and bypass2 are all called, then 
the behavior is as though first0 and deq0 execute, followed by enq1 
(which observes state changes that are made by deq0), followed by 
bypass2 (which observes state changes made by both deq and 
enq).  If only a subset of the methods execute, we still obtain the 
correct compositional behavior.  For example, if deq0 and bypass2 
execute (and not enq1), then bypass2 directly observes the state 
that deq0 produces (deq0 produces t0, bypass observes t1, and since 
enq is not executing: t1 = t0).  Thus, the behavior of a module 
interface with a single constraint is clear. 

4.6 Multi-Constrained Modular Composition  
A final step in giving the designer complete flexibility is to allow 
many sequences of rules to be composed.  For example, the 
designer may want three composition sequences to be generated:  
(i) R0, R1, R2; (ii) R2, R3; and (iii) R3, R0.  The most 
straightforward way to accomplish this is to create copies of rules 
that occur in multiple sequences and to then call the 
PROPCONSTRAINT procedure on each sequence. After 
PROPCONSTRAINT completes we construct a circuit and scheduler 
for the design using the normal Bluespec synthesis.  This 
combines composition sequences as well as rules that were 
unconstrained.  Although this method always produces correct 
circuits, it can introduce critical paths that the designer might not 
have intended.  We can illustrate this problem via the processor 
example from the previous sub-section in which we had one set of 
constraints that did not contain the branch taken rule, and one 
constraint that does contain the branch taken rule.  If we call the 
PROPCONSTRAINTS procedure for each constraint and then merge 
the resulting interfaces, we obtain the following conditional FIFO 
methods: 

bF:   {first0, deq0, clear0} $ enq1  
bD:  {first0, deq0} $ {enq1, clear1} $ bypass2 

bE:   {first0, deq0} $ enq1 $ bypass2 

As an example of an unindent combinational path, values might 
be passed from clear0 to enq1 in the bF FIFO.  Although 
functionally correct, this solution could produce a design with 
unsatisfactory cycle time.  One option is to have a scheduler 
disallow both of these methods from being called concurrently, 
and marking the path as a false-path.  However, an alternate 
solution that better fits a conventional synthesis flow exists. 

The solution is to produce “separate” interfaces for the different 
constraint groups.  In the above example, this would result in the 
following interfaces: 

bF:  {firsta0, deqa0} $ enqa1                 |  clearb0 
bD:  {firsta0, deqa0} $ enqa1 $ bypassa2  |  firstb0 $ clearb1 
bE:  {firsta0, deqa0} $ enqa1 $ bypassa2 |  firstb0 $ deqb0 

An example circuit for a register with the following interface is 
shown below: 

EHR_split:  {reada0, writea0} $ {reada1, writea1} $ {reada2, writea2} | 
     {readb0, writeb0} $  {readb1, writeb1} $ {readb2, writeb2} 
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writea0.x

reada1

reada0

readb0
writea0.en

writea1.en

D Q
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1
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Figure 6:  EHR with Split 

Note:  values are only forwarded from writea* to reada* and from 
writeb* to readb*, and not from writea* to readb* or writeb* to 
reada*.  It should be clear that as with the EHR, this “split” 
structure can be generated for arbitrary conditional method 
interfaces. 

5. RESULTS AND EVALUATION 
We evaluated the new synthesis methodology to confirm that it 
produces functionally correct results, that the performance meets 
the designer’s expectations, and that the final circuit quality 
remains high.  To implement the new flow we created the EHR 
state-element in Verilog and imported it, along with its interface 
scheduling properties into Bluespec. We then created the designs 
using registers as the only primitive state elements, i.e. FIFO’s, 
RF’s, etc. were created in Bluespec from registers only.  We then 
transformed the design into a new design according to the 
procedure outlined in Section 4 for each scheduling requirement.  
The resulting design was then fed through the Bluespec compiler 
to produce RTL Verilog, which was then synthesized using 
Synopsys Design Compiler to generate area and timing numbers 
for the TSMC 0.13µm G process.  We generated area and timing 
numbers for two different timing constraints to illustrate numbers 
for an area and a timing-constrained synthesis run. We also 
simulated each design to measure functional performance.   

Figure 6 shows the results for GCD designs to meet 3 different 
scheduling constraints.  The first design is the original design and 
does not incorporate any transformations.  The second design 
composed Rswap $ Rsub, and the third design was scheduled to 
satisfy the constraint: Rswap $ Rsub $ Rswap $ Rsub.  As is expected, 
as more rules are composed, fewer cycles are required to compute 
results.  Similarly, the critical path increases as more rules are 
composed.  Allowing the same rule to execute multiple times 



within a cycle also increases the area, as is seen with the last 
constraint since all associated logic needs to be duplicated.  

GCD Input Measure No 
Constr. 

Rswap X 
Rsub 

Rswap X Rsub X  
Rswap X Rsub 

Input 1 cycles 91 78 39 
Input 2 cycles 117 101 51 

10ns constr. Area (µm2) 5221 6479 13705 
10ns constr. Timing (ns) 10 10 10 

5ns constr. Area (µm2) 5909 9003 26638 
5ns constr. Timing (ns) 4.54 5.00 5.3 

Figure 7:  GCD Results 
Figure 8 shows the compilation results for a 4-stage processor 
pipeline. In addition to an unconstrained design (the traditional 
Bluespec flow), a composed design which behaves like a standard 
pipeline (see Schedule 1 in Section 3), and a superscalar design 
(see Schedule 2 in Section 3) were studied.  For the composed 
design we show that it is easy to study the behavior (both cycle 
count and cycle time) of different pipelines by simply changing 
the design’s schedule.  In the case of the superscalar design we 
examine why the cycle time at first does not match expectations 
and what simple changes can be made to dramatically improve the 
performance of the superscalar design. 

We synthesized the designs using one and two element FIFO’s as 
pipeline stages since a two element FIFO is required for a 
superscalar implementation to perform well.  A simple benchmark 
loop with arithmetic operations and conditional branches was run 
on all designs.  As a reference we show timing numbers for some 
of the key processor components in Figure 9.  These numbers are 
approximate since each synthesis run selects slightly different 
implementations.  However, it is clear that unless we further 
pipeline the design, no design can have a cycle time of much less 
than 1.6ns since we must sequentially get the decode FIFO output 
(Clk to Q – about 0.3ns), pass through an adder in the execute 
stage (about 0.9ns), pass through at least one level mux (0.3ns) 
and then satisfy setup time (0.1ns). 

Figure 8:  4-Stage Processor Results 
As expected, the unconstrained implementation performs poorly 
since the standard Bluespec compiler can only schedule 
alternating stages to execute in each cycle. However, the cycle 
time is close to optimal.  The composed pipeline is more 
interesting since it allows us to experiment with several 
interesting schedules.  Depending on the schedule we choose, we 
observe varying cycle counts and cycle times.  We should note 

that the only change we made to the composed designs during 
these experiments is that we changed the scheduling constraints.  
We did not change the underlying code.  The algorithms we 
presented in earlier sections ensure that correctness of the designs 
is maintained in this process. 

Component Propagation Delay 

32 bit addition 0.9ns 
32 bit increment 0.6ns 

32 bit compare to 0 0.6ns 

2-1 MUX (32 bits wide) 0.3ns 

Clk to Output + Setup Time 0.4ns 

Figure 9:  Component Delays 
The three composed designs that we examines were: (i) J $ F:  the 
jump taken appears to execute before the fetch rule. This means 
that the fetch rule uses the branch target in the same cycle that the 
branch is resolved.   The branch resolution followed by fetch 
becomes the critical path.  (Note:  J refers to the branch taken 
rule) (ii) D $ F $ J:  We move the branch taken rule to the “end of 
the cycle”.  This eliminates the critical path from jump taken 
through fetch.  However, this means that the branch taken 
observes the results of the decode stage – effectively we have 
moved the branch resolution into the decode stage.  Hence the 
critical path becomes: execute an add instruction, bypass it into 
the decode stage and compare it with 0 to see if the branch is 
taken.  This is a long critical path, but is a design used in many 
processors.  Finally, another common pipeline design (iii) is J | F:  
this is effectively splitting the access to the PC (see section 4.6) 
and ensures that fetch and jump do not execute simultaneously 
(fetch cannot observe the branch target in the cycle that the branch 
is resolved).  This eliminates the critical path from the first case 
but in turn has a slightly higher cycle count since branch taken 
and fetch cannot execute in the same cycle. Clearly there are 
trade-offs with all three of these designs. This high-level 
scheduling mechanism provides a very simple tool to experiment 
with the different pipelines and measure the impacts on cycle time 
and cycle count. 

As was mentioned earlier, we can apply the same scheduling 
algorithms to generate a superscalar design.  The results in Figure 
8 show that we obtain benchmark cycle count improvements by 
switching to the superscalar design.  This is expected since in 
many cases each stage can execute two instructions per cycle.  
However, the performance is only about 33% below that of the 
standard composed pipeline (case iii) because the pipeline is 
cleared after each branch taken – this has a larger relative penalty 
in the superscalar design than in the composed design.  Somewhat 
disturbingly, the cycle time for the superscalar design is more than  
twice that of the single element FIFO composed design (4.7ns vs. 
1.9ns).  In an optimal implementation we would expect the 
superscalar design to have a cycle time of only slightly more than 
the composed pipeline (about two MUX stages, or about 0.6ns 
worse).  Below we discuss several simple changes we can make to 
the circuit generation and the FIFO implementation to reduce the 
superscalar cycle time from 4.6ns to 3.0ns (about 0.5ns within 
optimal).  Note:  This is the only design for which we altered code 
to improve cycle times – all other designs were directly derived 
from the original processor code and transformed using the 
conditional composition algorithms. 

The first change is a simple circuit transformation shown in 
Figure 10.  This is a simple logic transformation that Synopsys 
design compiler currently does not perform, but which is easy to 

Design 
Bench. 
(cycles) 

Area 
10ns 
(µm2) 

Timing 
10ns 
(ns) 

Area 
1ns 

(µm2) 

Timing 
1ns 
(ns) 

1 element fifo: 

No Constr. 18525 24762 5.8 33073 1.6 
Comp J $ F 9881 25362 7.5 34161 2.2 

Comp D$F$J  9881 25180 8.0 34896 2.6 

Comp J | F  11115 25001 6.6 34511 1.9 

2 x Super 11115 25264 6.8 36037 1.9 

2 element fifo: 

No Constr. 18525 32240 7.4 39033 1.9 
Comp J | F 11115 32535 8.4 47084 2.63 

2 x Super 7410 45296 10.0 62649 4.7 

2 x Super+Fixes 7410 40180 9.9 62053 3.0 



add to the Bluespec compilation.  In this case, the Bz1_taken 
signal is on the critical path.  In the original design (on the left 
side of the figure) the next PC computation for the second fetch in 
the superscalar fetch stage cannot be computed until the earlier 
branch is resolved.  By simply moving logic across the MUX we 
can improve this path. 

 

Figure 10:  Moving Logic Across a Mux 
A more interesting change that had a dramatic impact on the cycle 
time of the superscalar design is that we slightly changed the two 
element FIFO specification.  These changes do not alter the 
behavior of the FIFO, but imbed high-level logic that we have 
about the FIFO into its circuits.  For example, we know that after 
dequeueing from the FIFO twice, it will be empty.  Since the write 
back stage in the superscalar design will always execute twice if 
the FIFO contains two valid elements (and once if it contains only 
one element), the execute stage does not need to check that the 
FIFO between the write back and execute stages is empty.  Such a 
check can add one or two MUX’s to the critical path (0.6ns).  We 
can achieve this effect by rewriting the enq method as follows (the 
changes to this method are highlighted in italics): 

enq x =  data_1.write x 
 if (full_0 == 0) then data_0 := x; 

full_0(1); 
if (full_0 == 1) then   full_1 := 1; 
else  full_1 := 0; 

    when ((full_1 == 0) || (full_0 == 0)) 
Clearly, these changes do not alter the behavior of the design:  We 
know that if full_0 is 0, then full_1 is also always 0, so it is safe to 
add the check of (full_0 == 0) to the method’s implicit condition.  
Similarly, we can write the value 0 to full_1 if the FIFO is empty 
and we are enqueueing a value since the value will be placed in 
the “0” slot.  Although these changes do not change the 
functionality, they have the impact of allowing constants to be 
effectively propagated through the pipeline – for example after 
this change, the execute stage logic is optimized via constant 
propagation to no longer need to check if the FIFO it is 
enqueueing in is full.   

Another example of this type of change is to the FIFO clear 
method.  Again we highlight the change in italics.  Obviously, the 
data values can have any value after the FIFO is cleared.  
However, by setting the data_0 value during a clear method call 
to the value it would have after a deq, the logic that reads from the 
FIFO can be optimize:  regardless of what the “first” rule in a 
stage does (deq or clear), it always moves data_1 into data_0, so 
the “second” rule to execute always knows what the “new” value 
in data_0 will be and hence can directly look at the data_1 
register.  Again, by simply adding this line of code which clearly 
doesn’t change FIFO functionality we embed some high-level 
knowledge into the design.  The result is that a MUX stage for 
one of the FIFO’s is removed from the critical path.  Note: this 
optimization works in the processor execute stage where the 
“first” execute rule always executes.  However, this optimization 

does not improve timing for the decode rules because the “first” 
decode rule might stall.  

clear = full_0 := 0;  full_1 := 0; 
            data_0 := data_1; 
    when (true) 

These types of changes allowed us to reduce the cycle time from 
4.6 to 3.0ns. The remaining 0.5ns can be obtained through similar 
changes but they become counterintuitive since one needs to keep 
track of when data is available and how mux’s are introduces. 
Instead, at that point it would be more reasonable to rewrite the 
design as a superscalar design. It is important to recognize that a 
decision to rewrite the design with “superscalar” in mind is not 
due to a short-coming in the synthesis methodology that we 
present here. As designers we simply have high-level knowledge 
that the compiler does not have. Without this knowledge, the 
compiler must be conservative. An interesting future approach to 
this work might be to use user-assertions to guide the compilation 
process.  For example, an assertion could be added that if FIFO 
slot “0” is empty, then FIFO slot “1” is also empty.   
6. CONCLUSION  
We presented a new synthesis algorithm for guarded atomic 
actions based on conditional rule composition and analyzed the 
efficiency of such an approach on several designs. We leveraged 
previous research on design transformation through rule 
composition as well as the EHR to create a practical framework 
that has a well founded theoretical foundation, but is also practical 
in that it eliminates the rule explosion that previously was 
required for such transformations.  Our algorithms create efficient 
implementations that satisfy multiple performance constraints for 
both rules and modules.  The experimental results show that 
interesting architectures can be rapidly generated by simply 
changing scheduling constraints.  Additionally, many of the 
resulting designs have efficient circuits.  In the cases where 
circuits are non-optimal, the designer can usually use high-level 
knowledge to make minor changes to the design to achieve the 
expected circuit timing. 
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