
Memory Model = Instruction Reordering + Store Atomicity

Arvind
MIT CSAIL

32-G866, 32 Vassar St.
Cambridge, MA 02139
arvind@csail.mit.edu

Jan-Willem Maessen
Sun Microsystems Laboratories

UBUR02-311, 1 Network Dr.
Burlington, MA 01803

JanWillem.Maessen@sun.com

Abstract

We present a novel framework for defining memory mod-
els in terms of two properties: thread-local Instruc-
tion Reordering axioms and Store Atomicity, which de-
scribes inter-thread communication via memory. Most
memory models have the store atomicity property, and
it is this property that is enforced by cache coherence
protocols. A memory model with Store Atomicity is seri-
alizable; there is a unique global interleaving of all op-
erations which respects the reordering rules. Our frame-
work uses partially ordered execution graphs; one graph
represents many instruction interleavings with identical
behaviors. The major contribution of this framework
is a procedure for enumerating program behaviors in
any memory model with Store Atomicity. Using this
framework, we show that address aliasing speculation
introduces new program behaviors; we argue that these
new behaviors should be permitted by the memory model
specification. We also show how to extend our model
to capture the behavior of non-atomic memory models
such as SPARC R© TSO.

1. Introduction

One may think of a multithreaded shared-memory
system as a single atomic memory on which multiple
apparently-sequential threads are operating. In practice,
of course, the memory system on a modern multiproces-
sor is a complex beast, comprising a tangle of caches,
queues, and buffers. Memory consistency models exist
to describe and constrain the behavior of these complex
systems.

When we refer to an atomic memory we mean that
there is a single monolithic memory shared by program
threads. Actions on this memory are serializable: there
is a single serial history of all Load and Store opera-
tions, consistent with the execution behavior of each

thread, which accounts for the observed behavior of the
program.

When we say threads are apparently sequential, we
mean that a single thread in isolation will always be-
have as if it is running sequentially. This implies a few
constraints which must not be taken for granted: for
example, a Store cannot be reordered with respect to an-
other Load or Store to the same memory location, or the
illusion of sequential execution will be shattered. Sim-
ilarly, we expect that dependencies between branches
and subsequent stores are respected; if branch prediction
occurs, it cannot have an observable effect.

In this setting, Sequential Consistency [19], or SC,
remains the gold standard against which all other mul-
tiprocessor memory models are judged [15]. In SC,
sequential behavior is enforced by requiring that serial-
izations respect the exact order in which operations oc-
curred in the program. There are two views of SC which
are widely understood. The first is a declarative view, in
which an existing execution is verified by showing that
an appropriate serialization of program operations exists.
The declarative view is most useful for determining the
correctness of a particular implementation of SC. The
second view is an operational view, in which we model
the execution of a program under SC by choosing the
next instruction from one of the running threads at each
step. The operational view is useful for verifying the
correctness of programs running under SC.

By contrast, the behavior of more relaxed memory
models is not very well understood. This paper presents
a unifying framework in which SC and relaxed mem-
ory models with an atomic memory can be understood.
These models are distinguished by different rules for
instruction reordering, described in Section 2; for our
purposes, we consider the instructions within a thread to
be partially ordered rather than totally ordered as in SC.

As a running example, we choose a relaxed model
which permits aggressive instruction reordering. Our



model is similar in spirit to the memory model of the
PowerPCTM architecture [24] or the RMO model for the
SPARC R© architecture [29], though it differs from both
in certain minor respects. Such a model is a good choice
for future computer systems: it is flexible, and permits
fairly ambitious architectural features; it treats all threads
uniformly, increasingly important when multiple threads
share execution resources that were previously private;
and it is simple.

All communication between threads occurs through
memory, which we discuss in Section 3. All models
with an atomic memory are serializable. However, se-
rializability alone gives very little intuition about the
ordering dependencies between instructions in different
threads. The most important contribution of this paper is
the Store Atomicity property (Section 3.3). Store Atom-
icity describes the ordering constraints which must exist
in serializable models.

We represent a program execution as a partial order
(or equivalently as a directed acyclic graph). This has
the advantage of capturing many indistinguishable seri-
alizations in a single, compact form. Store Atomicity
operates by connecting Loads directly to Stores; there
is no explicit memory in the system. Store Atomicity
also imposes additional constraints which capture or-
derings which must occur in every serialization. These
constraints are necessary to maintain Store Atomicity as
execution continues.

Like SC, we also provide an operational view of
the memory model. Store Atomicity gives a safe and
compact way to identify the possible candidate Store
operations which might be observed by a given Load op-
eration in a particular execution. These different choices
are the sole source of non-determinism in our memory
models. In Section 4, we outline an operational model
for enumerating all the possible executions of a program
in a relaxed memory model.

In Section 5 we present detailed case study of ad-
dress aliasing speculation in a relaxed memory model.
Speculative execution is distinguished by the fact that
it can go wrong. In general, adding speculation to a
memory model is unsafe: it will add new observable
behaviors to the model. For example, Martin, Sorin,
Cain, Hill, and Lipasti [23] show that naive value specu-
lation violates sequential consistency. We are interested
in clearly defining the boundary between safe and un-
safe forms of speculation in relaxed memory models.
We capture speculation by ignoring ordering constraints.
We must roll back execution if enforcing the constraints
results in an inconsistency.

Address aliasing speculation is particularly inter-
esting because it allows behaviors which are not per-
mitted by a non-speculative execution, but the result-

2nd instr→ +, etc. Branch L S Fence
1st instr↓ y y,w

+, etc. indep indep indep indep
Branch never never

L x indep indep indep x 6= y never
S x,v x 6= y x 6= y never

Fence never never

Figure 1. Weak Reordering Axioms. Entries in-
dicate when instructions can be reordered.

ing model is arguably simpler than the non-speculative
model (there are fewer dependencies to enforce). More-
over, to our knowledge no relaxed memory model cor-
rectly accounts for the additional dependencies required
by non-speculative alias detection. Memory models
therefore ought to permit this form of speculation.

Not every memory model obeys Store Atomicity
directly. A particularly interesting example of a non-
atomic memory model is the Total Store Order (TSO)
memory model of the SPARC Architecture. In Section 6
we show how to extend our model in order to capture
the behaviors of TSO. However, as processors grow to
share execution resources among threads we prefer mod-
els which treat memory uniformly. Our relaxed model
captures all TSO executions, but permits additional non-
TSO executions as well.

We conclude by discussing several possibilities for
future extensions to this work.

2. Instruction reordering

In a uniprocessor instructions can be reordered as
long as the data dependencies between the instructions
are preserved. In a shared memory system one has to be
more careful because a parallel program may rely on the
relative order of Loads and Stores to different addresses.

It is necessary (for programmers’ benefit, if nothing
else) for every memory model weaker than SC to provide
some mechanism to order any pair of memory operations.
Modern processors provide memory fences [29, 24, 16]
for this purpose. Fences allow memory operations to be
reordered between two fences but force all the Loads
and Stores before a fence to be ordered with respect to
subsequent Loads and Stores.

Figure 1 presents in tabular form one possible set
of rules for reordering instructions. Table entries indi-
cate when instruction reordering is permitted. Instruc-
tion pairs with blank entries may always be reordered.
Entries marked “never” may never be reordered. Data
dependencies constrain execution order, indicated by the
entries marked indep. Finally, the three entries labeled
x 6= y prevent the reordering of Stores with respect to
Loads and Stores to the same address; this ensures that



single-threaded execution will be deterministic. In line
with present practice, we ignore resource limitations en-
countered by an actual processor; we permit unbounded
register renaming and arbitrarily deep Load and Store
pipelines. To the authors’ knowledge, no extant memory
model imposes resource bounds.

All modern architectures speculatively execute past
branch instructions. However, Stores after a specula-
tive branch are not made visible until the speculation
is resolved. This is reflected in the “never” entries for
Branch.

The reordering rules specify local constraints on the
execution of a single thread. For example, the reordering
rules in Figure 1 give rise to directed acyclic graphs
like the one shown in Figure 5 (ordinary black edges
represent reordering constraints). Here in Thread A the
reordering constraints permit L3 and L5 to be reordered,
but neither instruction can be reordered with respect to
S1. Formally, we describe these constraints with a partial
order A ≺ B (“A precedes B”). It is important to stress
that the order of instructions in the original program is
relevant only in that it governs ≺.

There is one very subtle point lurking in the reorder-
ing table. It is absolutely necessary to capture every
single ordering dependency imposed by a particular ex-
ecution model. For example, consider the instruction
sequence S r,7; L y, where r is a register containing an
address. According to Figure 1, these instructions can
be reordered only if r 6= y. In a non-speculative execu-
tion, L y cannot be reordered until the instruction which
computes r has executed. If we permit address alias
speculation, these subtle dependencies can be dropped.
This allows additional execution behaviors, at the cost of
discarding executions which violate the reordering rules.
We examine this topic further in Section 5.

3. Store Atomicity

Having established a local ordering ≺ among the
instructions in a single thread, we must now describe
the behavior of multiple threads which execute together.
The only means of communication between threads is
via Stores and Loads. We begin by giving a formal
definition of serializability. This is straightforward, but
gives very little insight into how programs behave in
practice; serializability is best understood by examining
non-serializable behaviors. This allows us to identify
ordering relationships A@B which must exist in every
serialization. We call the resulting definition of @ Store
Atomicity.

Arrow Relation

A

B

Local ordering, A ≺ B

L

S

Observation, S = source(L)

A

S

Store Atomicity

Figure 2. The three types of @ edges.

3.1. Serializability

The basic definition of Serializability is quite simple.
An execution (or, equivalently, behavior) of a program
is given by a partially ordered set of operations. We
say A a=B if A and B operate on the same memory ad-
dress. Every Load L observes the value of some Store
S, which we refer to as source(L); clearly source(L) a=L.
A serialization of an execution is a total order < on all
operations obeying the following conditions:

1. A ≺ B ⇒ A < B: Local instruction ordering must
be respected.

2. source(L) < L: A Load executes after the Store
from which it obtains its value.

3. @S a= L. source(L) < S < L: Every load must ob-
tain the value of the most recent store to the same
address; there must be no intervening overwriting
store.

An execution is serializable if there is an order < sat-
isfying the above conditions. In the next section we
give some examples of non-serializable executions. In
general an execution will have a set X of many possible
serializations. We say that A @ B (“A is before B”) if
A < B in every serialization in X .

An execution represents a distinct outcome of a
multithreaded program: which instructions are executed
in each thread, which reordering constraints apply, and
most importantly which Store operation is observed by
each Load. A program has a set of possible executions.
By contrast, the fact that a single execution has many
serializations is irrelevant detail: all of these serializa-
tions exhibit the same behavior in practice, and there is
no real non-determinism involved. In fact, we say two
executions are equivalent when they have the same set
of serializations.



a

S1 x,1

S2 y,2

L6 x

S3 y,3

S4 x,4

L5 y

Thread A Thread B
S1 x,1 S3 y,3
Fence Fence
S2 y,2 S4 x,4
L5 y = 3 L6 x = 1?

Figure 3. When a Store to y is observed to have
been overwritten, the stores must be ordered.

3.2. Violations of serializability

The conditions imposed by serializability are most
easily understood by examining examples of executions
which appear to violate memory atomicity, and attempt-
ing to understand which ordering dependencies exist
in serialized executions which prevent those violations.
Our goal is to identify ordering relationships which must
always hold—that is, to determine when A @ B. We
will do this by showing a program fragment and a corre-
sponding execution graph (the @ relation). The meaning
of the edges in our illustrations is summarized in Fig-
ure 2. Solid edges are those required by local ordering≺.
Ringed edges are source edges indicating that the value
written by Store S is observed by Load L. Our goal is
to identify the dotted Store Atomicity edges: additional
ordering constraints which must be respected in every
execution.
Figure 3 demonstrates that Loads can impose ordering
relationships between Stores in different threads. Some
notational rules are in order: Loads and Stores are num-
bered with small subscripts; this numbering is chosen
to reflect one possible serialization of the observed ex-
ecution. Letters refer to constant memory addresses.
Non-subscripted numbers are simply arbitrary program
data (in our examples we endeavor to have every Store
Sk write its unique instruction number k to memory). Fi-
nally, the notation L5 y = 3 indicates that in the pictured
execution, the Load of y observes the value 3 written by
S3. This is followed by question mark as in L6 x = 1? if
the observation violates serializability.

Here L5 in Thread A observes S3, so S2 must have
been overwritten. We capture this by adding the dotted
dependency a, making S2 @S3. Thus S1 @S4 @L6; S1
has been overwritten and cannot be observed by L6.

Note that we have pictured only one of several pos-
sible executions of this fragment. It is possible for L5

b

L4 y

S1 x,1

S2 x,2

L6 x

S3 y,3

S5 y,5

Thread A Thread B
S1 x,1 S3 y,3
S2 x,2 S5 y,5
Fence Fence
L4 y = 3 L6 x = 1?

Figure 4. Observing a Store to y orders the
Load before an overwriting Store.

c

L5 y

S2 y,2

S6 z,6

S4 y,4

L7 z

S8 x,8

L9 x

S1 x,1

L3 y

Thread A Thread B Thread C
S1 x,1 S2 y,2 S4 y,4
Fence Fence Fence
L3 y = 2 S8 z,6 L7 z = 7
L5 y = 4 Fence

S8 x,8
L9 x = 1?

Figure 5. Unordered operations on y may order
other operations.

to instead observe S2. In that case, no known order-
ing would exist between S2 and S3, and L6 can observe
either S1 or S4. �
Figure 4 shows that when a Load observes a value
which is later overwritten, the Load must occur before
the overwriting store. L4 in Thread A observes S3 in
Thread B. It therefore must occur before S5 overwrites
S3. We insert the dotted dependency b to reflect this
fact, making L4 @S3. Thus S1 @S2 @L6, so L6 cannot
observe S1, which was overwritten by S2.

Notice that there is no overwriting Store between S5
and L6, so if L4 instead observes S5 can observe either
S1 or S2. �
Figure 5 shows that operations on a single location
(here y) may occur in an ambiguous order, but they may
establish an unambiguous order of operations elsewhere



c

S x

L x

S x

S x L x L x

S x S x
A

B

a

b

a. Predecessor S x must precede source(L x).
b. L x must precede successor S x.
c. Parallel pairs of observations of x order the ances-

tor of both L x before the successor of both S x.

Figure 6. Store Atomicity in brief. Wavy edges
are arbitrary @ relationships.

in the execution. Here S1 is succeeded by two loads
of y, L3 and L5. Meanwhile, S8 is preceded by two
stores to y, S2 and S4. There are two store/load pairings
to y, S2 @ L3 and S4 @ L5. These pairings cannot be
interleaved—for example, we cannot serialize S2 < S4 <
L3 even though S4 is unordered with respect to the other
two operations. Every serialization of the example in
Figure 5 will either order S2 < L3 < S4 < L5 or S4 <
L5 < S2 < L3. In either case, it is clear that S1 < L7.
The mutual ancestors of L3 and L5 must always precede
the mutual successors of S2 and S4; this requires the
insertion of edge c between S1 and L7. Because of this,
L9 cannot observe S1; it must have been overwritten by
S8. �

Note that we have motivated the examples in this
section by looking for contradictory observations, and
showing that there are ordering relationships which un-
ambiguously rule them out. This is the chief purpose
of the @ relation: it lets us show not just that an execu-
tion is serializable, but also that execution can continue
without future violations of serializability.

3.3. The Store Atomicity property

Given an execution 〈≺,source, a=〉, the definition of
serialization directly tells us the following important
facts about the @ relation:

1. A ≺ B ⇒ A@B: local ordering is respected.
2. source(L)@ L: a Load happens after the Store it

observes.
3. @S a=L. source(L)@S@L: A load cannot observe a

Store which is certain to be overwritten.

Definition of Store Atomicity:
Store Atomicity imposes the following additional re-
quirements on the @ relation (shown graphically in Fig-
ure 6):
a. Predecessor Stores of a Load are ordered before

c

d

a

b L5 x

L6 y

S1 x,1

S3 y,3

S2 x,2S4 y,4

Thread A Thread B Thread C
S1 x,1 S4 y,4 S2 x,2
Fence Fence
S3 y,3 L5 x = 2
L6 y = 4

Figure 7. Store atomicity may need to be en-
forced on multiple locations at one time.

its source: A predecessor store to the same location is
either observed or it must have occurred before the Store
which was observed (see example in Figure 3).

S a=L ∧ S@L ∧ S 6=source(L) ⇒ S@source(L)

b. Successor Stores of an observed Store are ordered
after its observers: If L sees source(L) then L must
have occurred before any subsequent S to the same loca-
tion (see example in Figure 4).

S a=L ∧ source(L)@S ⇒ L@S

c. Mutual ancestors of unordered Loads are ordered
before mutual successors of the Stores they observe.:
When store/load pairs to the same address cannot be
ordered, they can still impose an order on other nodes
(see example in Figure 5).

L a=L′ ∧ A@L ∧ A@L′ ∧
source(L)@B ∧ source(L′)@B ⇒ A@B

�
We have presented Store Atomicity as a declarative

property—we can check an arbitrary execution graph
and say whether or not it obeys Store Atomicity. There
are two important points in this regard. First, it is legal to
introduce additional edges in an execution graph so long
as no cycles are introduced—however, doing so rules out
possible program behaviors. For example, in Figure 5 we
can insert an edge from L5 to S6. Doing so rules out any
execution in which S6 < L7 < S4 < L5. Real systems
make use of this fact to simplify implementation (see
Section 4.2). The @ ordering is the minimal ordering
which obeys Store Atomicity; this ensures that legal
program behaviors are not dropped.

Finally, note that adding a dependency to enforce
Store Atomicity can expose the need for additional de-
pendencies. In Figure 7 no dependency initially exists
between S1 and S2, even after L5 observes S2 (edge a).
However, when L6 observes S4 (edge b), Store Atomic-
ity requires the insertion of edge c between S3 and S4.



This reveals that S1 @L5. We must therefore also insert
edge d, S1 @S2. In general, we continue the process of
adding dependencies until Store Atomicity is satisfied.

4. Enumerating program behaviors

In this section we give a procedure for generating
all possible execution graphs for a program. This is
conceptually very simple: Generate a node for each
instruction executed, and connect those nodes by edges
which correspond to the @ relation. To generate the
graph, a behavior must include the program counter (PC)
and register state of each of its threads. Register state
is represented by a map RT [r] from a register name to
the graph node which produces the value contained in
the register at the current PC. When a node is generated,
it is in an unresolved state. When its operands become
available, a node’s value can be computed and stored in
the node itself; this places the node in a resolved state.
Conceptually we imagine instructions such as Stores
and Fences produce a dummy value; a Branch resets the
thread’s PC when it is resolved.

In general multiprocessor programs are non-
deterministic, so we expect our procedure to yield a
set of distinct executions. Every step in our graph execu-
tion is deterministic except for the resolution of a Load
instruction. Resolving a Load requires selecting a can-
didate Store. Each distinct choice of a candidate store
generates a distinct execution. Our procedure keeps track
of all these choices; this is the heart of enumeration.

Definition of Candidate Stores For each Load opera-
tion L, candidates(L) is the set of all stores S a=L such
that:

1. All prior Loads L′@S and Stores S′@S have been
resolved.

2. @S′ a=L. S@S′@L: S has not been overwritten.

Memory is initialized with Store operations before any
thread is started. This guarantees that there will always
be at least one “most recent Store” S, so candidates(L)
is never empty.

Our definition of candidates(L) is valid only if ev-
ery predecessor Load of L has been resolved. This is
because resolving a Load early can introduce additional
inter-thread edges. These new dependencies may cause
predecessor Loads to violate Store Atomicity when they
choose a candidate Store. We might imagine restricting
the definition of candidates(L); however, any simple re-
striction rules out legal executions. By restricting Load
resolution, we avoid this possibility.

4.1. Graph execution

In order to enumerate all the behaviors of a program,
we maintain a set of current behaviors B; each behavior
contains a PC and register map for each thread along
with the program graph.

At each step, we remove a single behavior from B
and refine it as follows:
1. Graph generation: Generate unresolved nodes for
each thread in the system, starting from the current PC
and stopping at the first unresolved branch. Insert all
the solid ≺ edges required by the reordering rules. For
example, for a Fence instruction we must add ≺ depen-
dencies from all prior Loads and Stores. In effect we
keep an unbounded instruction buffer as full as possible
at all times.
2. Execution: Execution propagates values dataflow-
style along the edges of the execution graph. An non-
Load instruction is eligible for execution only when all
the instructions from which it requires values have been
executed (the Fence instruction requires no data and
can execute immediately.) After executing an eligible
instruction, update the node with its value. If the result
of the instruction serves as an address argument for a
Load or Store, insert any ≺ edges required by aliasing.
Continue execution until the only remaining candidates
for execution are Loads.

Repeat steps 1 and 2 until no new nodes are added
to the graph.
3. Load Resolution: Insert any dotted @ edges re-
quired by Store Atomicity into the graph. For each
unresolved load L whose predecessor loads have been
resolved, compute candidates(L). For every choice of
Store S ∈ candidates(L), generate a new copy of the ex-
ecution. In this execution, resolve source(L) = S, and
update L with the value stored by S. Once again insert
any dotted @ edges required by Store Atomicity. Add
each resulting execution to B. �

Load Resolution is the only place where our enu-
meration procedure may duplicate effort. Imagine an
execution contains two loads L1 and L2 which are candi-
dates for resolution. We will generate a set of executions
which resolve L1 first, and then L2, but we will also gen-
erate a set of executions which resolve L2 first, and then
L1. In many (but not all) cases, the order of resolution
won’t matter. We discard duplicate behaviors from B
at each Load Resolution step to avoid wasting effort. It
is sufficient to compare the Load-Store graph of each
execution. In a Load-Store graph we erase all operations
except L and S, connecting predecessors and successors
of each erased node. All the graphs pictured in this pa-
per are actually Load-Store graphs; we have erased the
Fence instructions.



We have written the above procedure to be as clear
as possible. However, it is not a normalizing strategy: A
program which contains an infinite loop can get stuck in
the graph generation and execution phases and never re-
solve a Load. More complicated procedures exist which
fix this problem (for example, by avoiding evaluation
past an unresolved Load).

Note that while graph generation blocks at a branch
instruction, we nonetheless achieve the effect of branch
speculation: Once the graph has been generated, the
rules for candidates(L) allow us to “look back in time”
and choose the candidate store we would have chosen
through branch speculation. Branch speculation in our
model is captured by the structure of the graph, not by
the details of graph generation.

4.2. Enforcing Store Atomicity in real systems

When defining @ we are very careful to insert only
those dependencies which are necessary to enforce local
instruction ordering and Store Atomicity. But it is safe
to impose an ordering between any pair of unordered
nodes, so long as we add any Store Atomicity edges
which result from doing so. This will eliminate some
possible behaviors, but the behaviors which remain will
be correct. Real systems have exactly this effect. We
can view a cache coherence protocol as a conservative
approximation to Store Atomicity. Ordering constraints
are inserted eagerly, imposing a well-defined order for
memory operations even when the exact order is not
observed by any thread.

For example, consider an ownership-based cache
coherence protocol. Such a protocol maintains a single
canonical version of the data in each memory location,
either in memory or in an owning cache. A Store must
obtain ownership of the data—in effect ordering this
Store after the Stores of any prior owners. Thus, the
movement of cache line ownership around the machine
defines the observed order of Store operations. Mean-
while, a Store operation must also revoke any cached
copies of the line. This orders the Store after any Loads
which used the cached data. Finally, a Load operation
must obtain a copy of the data read from the current
owner, ordering the Load after the owner’s Store.

Within a processor, an ordering relationship be-
tween two instructions requires the earlier to complete
before the later instruction performs any visible action.
When operations are not ordered by the reordering rules,
they can be in flight simultaneously—but limitations of
dependency tracking, queuing, and so forth may force
them to be serialized anyhow.

Showing that a particular architecture obeys a par-
ticular memory model is conceptually straightforward:

simply identify all sources of ordering constraints, make
sure they are reflected in the @ ordering, and show that
the resulting constraints are consistent with the local
reordering rules and with Store Atomicity.

5. Speculation

We are interested in the general problem of deter-
mining whether a given speculative technique obeys a
relaxed memory model. What distinguishes speculation
from mere reordering is the possibility that it can go
wrong. We can describe speculation in our graph-based
formalism in two ways: First, we can speculatively guess
some or all the values which will be manipulated by the
program. Instruction execution checks the assumed val-
ues against the correct values. Value speculation is open-
ended, and we leave it for future work. Second, we can
resolve instructions early, in effect ignoring some depen-
dencies. This can result in violations of Store Atomicity.
In this section we explore a particular example: address
aliasing speculation in our relaxed memory model.

5.1. Disambiguating addresses

Entries of the form x 6= y for Load and Store instruc-
tions in Figure 1 are data-dependent, and require us to
resolve the aliasing of memory addresses before they can
be reordered. Consider the code fragment in Figure 8.
Here the memory location x is a pointer containing the
address of another memory location. In Thread B the
pointer in x is loaded into register r6. The value 7 is
stored in the pointed-to address. L8 can be reordered
with respect to S7 only if their addresses differ. There
are thus two possible local reorderings for Thread B: one
where r6 = y with the dependency S7 ≺ L8, and a second
in which r6 6= y and no dependency is necessary.

In our non-speculative model we require these alias-
ing relationships to be resolved before instruction re-
ordering can occur. Thus, every memory operation de-
pends upon the instruction which provides the address
of each previous potentially-aliasing memory operation.
In Figure 1 L6 is the source of the address of S7, which
potentially aliases L8, so L6 ≺ L8, as shown in the left-
most execution in Figure 9. On an actual non-speculative
machine, we do not reorder S7 and L8 until L6 is com-
plete. This is true even though there is no data depen-
dency between L6 and L8. This dependency means that
S2 @S4 @L8, so L8 cannot observe S2.

5.2. Speculative address disambiguation

The center and right-hand diagrams in Figure 9
show the speculative behavior of Figure 8 in the same



Non-speculative

S1 x,w L3 yS1 x,w L3 y S1 x,w L3 y

S4 y,4

S2 y,2 r6=L6x

S5 x,z r8=L8y

S7 r6,7 S4 y,4

S2 y,2 r6=L6x

S5 x,z r8=L8y

S7 r6,7

Equivalent speculative execution

S4 y,4

S2 y,2 r6=L6x

S5 x,z r8=L8y

S7 r6,7

New speculative behavior

Figure 9. The behaviors of Figure 8 in which source(L3) = S2 and source(L6) = S5.

Thread A Thread B
S1 x,w L3 y = 2
Fence Fence
S2 y,2 r6 = L6 x = z
S4 y,4 S7 r6,7
Fence r8 = L8 y
S5 x,z

Figure 8. Example in which speculative execu-
tion of L8 alters program behavior.

situation. Address aliasing speculation allows us to pre-
dict that S7 and L8 will not alias. L8 can be speculatively
reordered before both L6 and S7; there is no need to
wait for r6 to be loaded. Once r6 has been loaded, if its
value is equal to y we attempt to insert an edge between
S7 and L8. If source(L8)@S7 and r6 = y, L8 is observ-
ing a value overwritten by S7, violating Store Atomicity.
L8 and any instructions which depend upon it must be
thrown away and re-tried.

Speculatively assuming two instructions do not
alias eliminates the need to wait for the addresses of
potentially-aliasing operations to be resolved. Conse-
quently, the local graph for speculative execution (on the
right in Figure 8) omits the edge from L6 to L8. The con-
sequence of all this is that L8 can be reordered before L4,
observing L2 as shown in the rightmost graph. This be-
havior was forbidden by the dependency S6 ≺ L8 in the
non-speculative execution. The original non-speculative
behavior remains valid in a speculative setting (middle
graph).

In effect, speculation drops the dependency S6 ≺ L8
required by alias checking. The price is that we may
later resolve L8, then discover that S7 ≺ L8 and that L8
was not on the frontier of the graph.

The differences between speculative and non-
speculative models is often quite subtle. To our surprise,
all the behaviors permitted by aliasing speculation ap-
pear to be consistent with the reordering rules in Figure 1,

but some are nonetheless impossible in a non-speculative
model. This is because checking for aliasing introduces a
subtle ordering dependency: it is not safe to attempt to re-
order two memory operations until both their addresses
have been computed. Omitting this dependency leads
to simpler rules. To our knowledge, no extant processor
memory model accounts for the additional dependencies
required to resolve aliasing non-speculatively.

6. Total Store Order: A non-atomic model

The Total Store Order (TSO) memory model is a
non-atomic memory model which is in wide use in the
SPARC architecture [29]. It is of particular interest be-
cause it is reasonably well-understood and violates mem-
ory atomicity. The only reordering permitted in TSO is
that a later Load can bypass an earlier Store operation.
Local Load operations are permitted to obtain values
from the Store pipeline before they have been committed
to memory. In effect, a Load which obtains its value
from a local Store must be treated specially.
Figure 10 (based on a similar example in [1]) shows
that simple globally-applicable reordering rules cannot
precisely capture Store Atomicity. Both threads Store to
the flag variable z and then Load from it. These Loads are
satisfied from the Store buffer before the Stores become
globally visible. This permits the subsequent L6 and L10
to be reordered very early in execution, and to observe
S5 and S1 instead of S7 and S2.

In Figure 11 we see graphs for this particular exe-
cution under three different models. First, observe that
the leftmost execution is consistent with the rules from
Figure 1; these rules are very lenient and permit any
TSO execution along with many executions which vio-
late TSO (for this reason, TSO programs require fewer
fences than the equivalent programs under RMO).

Second, note that if we simply allow Store/Load re-
ordering as permitted in TSO we obtain the inconsistent
execution shown in the center of Figure 11. Here we



Naive TSO

S2 x,2

S1 x,1

L4 z

L6 y

S8 z,8

S5 y,5

L9 z

L10 x

S7 y,7

S3 z,3

S2 x,2

S1 x,1

L4 z

L6 y

S8 z,8

S5 y,5

L9 z

L10 x

S7 y,7

S3 z,3

S2 x,2

S1 x,1

L4 z

L6 y

S8 z,8

S5 y,5

L9 z

L10 x

S7 y,7

S3 z,3

With Aggressive Reordering TSO with correct bypass

Figure 11. Graphs for Figure 10 in several different models. TSO dependencies are gray.

Thread A Thread B
S1 x, 1 S5 y, 5
S2 x, 2 S7 y, 7
S3 z, 3 S8 z, 8
L4 z = 3 L9 z = 8
L6 y = 5 L10 x = 1

Figure 10. An execution which obeys TSO but
violates memory atomicity.

assume that source(L6) = S5; according to Store Atom-
icity, L6 @ S7. This means that S1 @ S2 @ L10, so L10
obtains a value which has been overwritten.

To capture the behavior of TSO, we use a different
kind of edge to represent Store-Load order within a sin-
gle thread. These dependencies, between S3 and L4 and
between S8 and L9, are shown in grey in the rightmost
execution in Figure 11. Because these operations are in
the same thread, there is no ordering dependency of any
kind between them—the grey edges do not figure in to
the@ordering in any way. By contrast, if (say) L4 had
obtained its value from a S8, we would consider S3 ≺ L4.
Store Atomicity would then require that S3 @ S8 @ L4.
In general if S a=L and S is before L in program order,
S 6@ L when S = source(L) and S ≺ L otherwise. �

We believe that models which treat the local thread
specially are shortsighted in the modern era of multi-
core processors. For example, it might seem reasonable
for multiple threads running on the same core to use
the same bypass optimization, so that a Load from one
thread can be satisfied by an outstanding Store from an-
other thread. We advocate the use of memory models
which treat all processors symmetrically. We can bracket
TSO on either side by models which treat every thread
the same way. However, it remains to be seen if there
is a store atomic model which incorporates all of the
behaviors permitted by TSO, but does not require addi-

tional barriers to be inserted into TSO code in order to
guarantee program correctness.

7. Related work

The literature on memory models is a study in the
tension between elegant, simple specification and effi-
cient implementation. Collier [6] is a standard reference
on the subject for computer architects, and established
the tradition of reasoning from examples which we have
continued. The tutorial by Adve and Gharachorloo [1] is
an accessible introduction to the foundations of memory
consistency.

The use of graphs or partial orders to represent tem-
poral ordering constraints for memory consistency has a
long history. In virtually all work on the subject, cycles
in the graph indicate violations of memory consistency.
Shasha and Snir [27] take a program and discover which
local orderings are involved in potential cycles and are
therefore actually necessary to preserve SC behavior; the
remaining edges can be dropped, permitting the use of
a more weakly-ordered memory system. Condon and
Hu [7] use graphs very similar to ours to represent execu-
tions of a decidable SC variant. The computation-centric
memory models of Frigo and Luchangco [9, 8, 20] use
DAGs to capture ordering dependencies between mem-
ory operations. Synchronization is implicit in the graph
structure—several of the models explored are not suffi-
ciently strong in themselves to encode synchronization
using load and store operations. The specification of
TSO [29] is given in terms of several partial orders on
program instructions in a single thread. However, the
inter-thread behavior is defined by serialization. TSO-
tool [12] constructs a graph representing an observed
execution, and uses properties a and b from Store Atom-
icity to check for violations of Total Store Order. They
do not formalize or check property c; indeed, they give



an example similar to Figure 5 which they accept even
though it violates TSO.

The post-facto nature of memory semantics creates
problems in verifying the correctness of consistency pro-
tocols, even for Sequential Consistency. Model checking
of SC was shown to be undecidable [13, 4, 26] due to the
difficulty of producing a witnessing order for all possible
executions. Our model, too, lacks a well-defined notion
of time. We avoid some of the resulting problems by
establishing a clear mapping between L and source(L)
(rather than between L and the value loaded); this is
akin to Qadeer’s [25] notion of data independence. In
practice, however, candidates(L) is limited by consid-
ering the temporal order of protocol actions. Work on
decidable subsets of SC [3, 13, 5] should thus extend
gracefully to weaker models with Store Atomicity.

For programmers, the compiler and runtime can
have an enormous influence on memory model guaran-
tees. The idea of properly synchronized programs [2]
and of release consistency [11, 18] is to present a pro-
gramming model which, if obeyed, appears to be se-
quentially consistent, even with a comparatively weak
underlying memory system.

The revised specification of the memory model for
the JavaTM Programming Language [17, 22] sets an am-
bitious goal: to completely specify the behavior of every
program in such a way that no compiler optimizations
are invalidated, and programmers can reason in terms of
a high-level model similar to release consistency. The
model must encompass an open-ended set of specula-
tive behaviors while forbidding a small class of bad
behaviors—those which permit data (such as passwords)
to be pulled “out of thin air.” Every single load requires
a justification, a distinct execution from that program
point in which the load obtains the value loaded. The
justification is discarded; only the value loaded is kept.
Thus, it is likely that enumerating the legal behaviors of
Java code is at least NP-complete and may be undecid-
able. The JMM is best viewed purely as a declarative
specification which can be applied to executions after
the fact to determine their legality.

An alternative to SC is a weak but easily-understood
memory model—the goal of location consistency [9, 10],
and the goal of our relaxed memory model. The CRF
memory model [28] takes this idea to its logical conclu-
sion, by presenting a model rich enough to capture other
consistency models, including SC, location consistency,
and a proposed memory model for the Java Programming
Language [21]. Like the present work, CRF focuses its
attention on a set of reordering rules governing the be-
havior of instructions within a thread. However, it uses
a cache-based, rather than a graph-based, model for in-
terprocessor memory consistency, making it harder to

reason abstractly about program behavior.

8. Conclusions and future work

In this paper we have examined the behavior of
memory models with an atomic memory. These models
generalize SC to a setting in which instructions in each
thread are partially ordered rather than totally ordered.
Our technique is parameterized by a set of reordering
rules; it is easy to experiment with a broad range of
memory models simply by changing the requirements
for instruction reordering.

We have defined Store Atomicity as a property that
captures which instructions must be ordered in any seri-
alization of an execution. Furthermore, we have given an
operational meaning to Store Atomicity, permitting us
to enumerate the possible behaviors of a multithreaded
program as a set of execution graphs. Such a proce-
dure has long existed for Sequential Consistency; to our
knowledge this is the first such procedure for a relaxed
memory model. Our enumeration procedure allows us
to verify by execution that a program fragment will have
the desired behavior in all cases. This can be used by
architects to verify memory consistency protocols, but
it can also be used by programmers to guarantee that a
program actually behaves as expected (for example, to
check that a locking algorithm meets its specification).

We have deliberately glossed over some details
which are important on a real machine. We assumed
all reads and writes accessed fixed-size, aligned words;
in practice, loads and stores occur at many granularities
from a single byte to whole cache blocks. A faithful
model can potentially match a Load up with several
Store operations, each providing a portion of the data be-
ing read. Real architectures also provide atomic memory
primitives such as Compare and Swap which atomically
combine Load and Store actions. None of these details
is particularly difficult to capture, but as a whole they
complicate the presentation of the underlying idea of
Store Atomicity.

By drawing a clear boundary between legal and ille-
gal behaviors for a particular memory model, it is easy
to judge the safety of speculation using our framework.
It is not well-understood how to determine when spec-
ulation violates a relaxed memory model. We learned
that simple relaxed memory model specifications may
permit behaviors which can only be obtained through
address aliasing speculation. This is because resolving
address aliasing non-speculatively introduces subtle or-
dering dependencies which have been ignored in the
past.

In the following paragraphs we discuss several di-
rections in which this work can be extended or applied.



Effect on programming: Previously unseen behav-
iors are a cause for concern for programmers—programs
tested on non-speculative machines may fail in a difficult-
to-debug fashion when moved to a speculative machine.
Our goal in this paper was a descriptive specification,
which could enumerate all possible behaviors of a pro-
gram’s execution. Application programmers are better
served by a prescriptive programming discipline, de-
scribing how to write programs to obtain particular be-
haviors. We are interested in using our model to define
and check various prescriptive disciplines. For exam-
ple, we can say a program is well synchronized if for
every load of a non-synchronization variable there is
exactly one eligible store which can provide its value
according to Store Atomicity. This idea generalizes the
notion of Proper Synchronization [2] to arbitrary syn-
chronization mechanisms, rather than just locks. When
programs obey such a discipline, they can be run using
much weaker memory models such as (Lazy) Release
Consistency [11, 18].
Tools for verifying memory model violations: It
should be relatively easy to take a program execution
and demonstrate that it is correct according to a given
memory model without the need to compute serializa-
tions. Graph-based approaches such as TSOtool [12]
have already demonstrated their effectiveness in this
area.
Transactional memory: Transactional memory [14] is
an appealing programming discipline which has gained
increasing intellectual traction in recent years. One may
view a transaction as an atomic group of Load and Store
operations, where the addresses involved in the group
are not necessarily known a priori. It is worth exploring
if the big-step, “all or nothing”, semantics of currently
used to describe atomic transactions can be explained
in terms of small-step semantics using the framework
provided in this paper.
Speculative execution: The immediate reaction of
many of our colleagues on hearing of the discrepancy
between speculative execution and non-speculative exe-
cution was “The speculative execution must be wrong.”
Yet similar behaviors are currently possible on many
machines regardless of the specification of the memory
model. It is important for designers to understand the im-
plications of allowing or disallowing speculation when
specifying a memory model. For implementors of spec-
ulation, it must be clear how to decide that failure has
occurred, and how to roll back execution when it does so.
We are working to formalize a general framework for
speculation based on Store Atomicity. This will allow
us to treat unusual forms of speculation such as cross-
thread speculation; multithreaded architectures provide
a fertile ground for exploiting such techniques.

Reference specification of a computer family: It will
be worth while to write an ISA specification which per-
mits maximum flexibility in implementation and yet
provides an easy to understand memory model. Manuals
for current computer systems fall woefully short of this
ideal.

Acknowledgments

Krste Asanovic played a vital role in targeting our
work to computer architects. The comments of the
anonymous reviewers on three different versions of this
paper over two years had a major impact on our presenta-
tion of semantics to this audience. We’ve also benefited
enormously from discussions with Victor Luchangco,
Sarita Adve, Matteo Frigo, and Maurice Herlihy. Jan-
Willem Maessen would like to thank the Fortress team,
which is part of the Sun Hero HPCS project. Arvind
was supported in part by the IBM PERCS project. Both
projects are funded in part by the DARPA HPCS pro-
gram.

References

[1] S. V. Adve and K. Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial. IEEE Computer, pages
66–76, Dec. 1996.

[2] S. V. Adve and M. D. Hill. Weak Ordering – A New
Definition. In Proceedings of the 17th International
Symposium on Computer Architecture, pages 2–14. ACM,
May 1990.

[3] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM
Trans. Program. Lang. Syst., 15(1):182–205, 1993.

[4] R. Alur, K. McMillan, and D. Peled. Model-checking of
correctness conditions for concurrent objects. In LICS

’96: Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, page 219, Washington, DC,
USA, 1996. IEEE Computer Society.

[5] J. D. Bingham, A. Condon, and A. J. Hu. Toward a
decidable notion of sequential consistency. In SPAA ’03:
Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pages 304–313,
New York, NY, USA, 2003. ACM Press.

[6] W. W. Collier. Reasoning about parallel architectures.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[7] A. E. Condon and A. J. Hu. Automatable verification
of sequential consistency. In SPAA ’01: Proceedings
of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, pages 113–121, New York,
NY, USA, 2001. ACM Press.

[8] M. Frigo. The weakest reasonable memory model. Mas-
ter’s thesis, MIT, Oct. 1997.

[9] M. Frigo and V. Luchangco. Computation-centric mem-
ory models. In Proceedings of the 10th ACM Sympo-
sium on Parallel Algorithms and Architectures, June/July



1998.
[10] G. R. Gao and V. Sarkar. Location Consistency – A

New Memory Model and Cache Coherence Protocol.
Technical Memo 16, CAPSL Laboratory, Department
of Electrical and Computer Engineering, University of
Delaware, Feb. 1998.

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-memory Multipro-
cessors. In Proceedings of the 17th International Sym-
posium on Computer Architecture, pages 15–26. ACM,
May 1990.

[12] S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu. Tsotool:
A program for verifying memory systems using the mem-
ory consistency model. In ISCA ’04: Proceedings of the
31st annual international symposium on Computer archi-
tecture, page 114, Washington, DC, USA, 2004. IEEE
Computer Society.

[13] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verify-
ing sequential consistency on shared-memory multipro-
cessor systems. In CAV ’99: Proceedings of the 11th In-
ternational Conference on Computer Aided Verification,
pages 301–315, London, UK, 1999. Springer-Verlag.

[14] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA ’93: Proceedings of the 20th annual international
symposium on Computer architecture, pages 289–300,
New York, NY, USA, 1993. ACM Press.

[15] M. D. Hill. Multiprocessors should support simple
memory-consistency models. IEEE Computer, 31(8):28–
34, 1998.

[16] Intel, editor. Intel IA-64 Architecture Software Devel-
oper’s Manual. Intel Corporation, Jan. 2000.

[17] JSR 133. Java memory model and thread specification
revision. http://jcp.org/jsr/detail/133.jsp, Sept. 2004.

[18] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory.
In Proceedings of the 19th International Symposium on
Computer Architecture, pages 13–21. ACM, May 1992.

[19] L. Lamport. How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers, C-28(9):690–691,
Sept. 1979.

[20] V. Luchangco. Memory Consistency Models for High
Performance Distributed Computing. PhD thesis, MIT,
Cambridge, MA, Sep 2001.

[21] J.-W. Maessen, Arvind, and X. Shen. Improving the
Java memory model using CRF. In Proceedings of the
15th AnnualConference on Object-Oriented Program-
ming Systems, Languages and Applications, pages 1–12,
Minneapolis, MN, Oct 2000.

[22] J. Manson, W. Pugh, and S. Adve. The Java memory
model. In Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, pages 378–391, Long
Beach, CA, Jan. 2005. ACM SIGPLAN.

[23] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill,
and M. H. Lipasti. Correctly implementing value predic-
tion in microprocessors that support multithreading or
multiprocessing. In MICRO 34: Proceedings of the 34th
annual ACM/IEEE international symposium on Microar-
chitecture, pages 328–337, Washington, DC, USA, 2001.
IEEE Computer Society.

[24] C. May, E. Silha, R. Simpson, and H. Warren, editors.
The PowerPC Architecture: A Specification for A New
Family of RISC Processors. Morgan Kaufmann, 1994.

[25] S. Qadeer. Verifying sequential consistency on shared-
memory multiprocessors by model checking. IEEE Trans.
Parallel Distrib. Syst., 14(8):730–741, 2003.

[26] A. Sezgin and G. Gopalakrishnan. On the decidability of
shared memory consistency validation. In MEMOCODE

’2005: Proceedings of the Third ACM-IEEE Conference
on Formal Methods and Models for Codesign, 2005.

[27] D. Shasha and M. Snir. Efficient and correct execution
of parallel programs that share memory. ACM Trans.
Program. Lang. Syst., 10(2):282–312, 1988.

[28] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile
& Fences (CRF): A New Memory Model for Architects
and Compiler Writers. In Proceedings of the 26th Inter-
national Symposium on Computer Architecture, Atlanta,
GA, May 1999. ACM.

[29] D. L. Weaver and T. Germond, editors. The SPARC
Architecture Manual (Version 9). Prentice-Hall, 1994.


