
Software-assisted Cache Mechanisms for Embedded Systems

by

Prabhat Jain

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 14, 2007

Certified by. .
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Software-assisted Cache Mechanisms for Embedded Systems

by

Prabhat Jain

Submitted to the Department of Electrical Engineering and Computer Science
on September 14, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Increasingly embedded systems are using on-chip caches as part of their on-chip memory
system. This thesis presents cache mechanisms to improve cache performance and provide
opportunities to improve data availability and stable prefetching that can lead to predictable
cache performance (or cache predictability).

A profile-based analysis, annotation generation, and simulation framework has been
implemented to evaluate the cache mechanisms. This profile-based framework can take a
compiled benchmark and a set of inputs and evaluate various cache mechanisms and provide
a range of possible performance improvement scenerios. The cache mechanisms have been
evaluated using this framework to gather the miss rate and IPC and software/harware cost
vs. performance tradeoff information. The results show that the proposed cache mechanisms
can improve performance at a modest cost.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Embedded Memory Systems . 13
1.3 Research Problems . 14

1.3.1 Cache Performance . 14
1.3.2 Cache Predictability . 15
1.3.3 Cache Pollution with Prefetching . 15

1.4 Thesis Contributions . 16
1.4.1 Intelligent Cache Replacement . 16
1.4.2 Disjoint Sequences and Cache Partitioning 17

1.5 Thesis Organization . 18

2 Overview of Approach 20
2.1 Architecture Mechanisms . 20
2.2 Evaluation Methodology . 23

2.2.1 Overall Flow . 23
2.2.2 Program Analysis . 23
2.2.3 Program Code Modification . 23
2.2.4 Simulation Framework . 23
2.2.5 Benchmarks . 24

2.3 Evaluation of the Mechanisms . 24
2.3.1 Intelligent Cache Replacement . 24
2.3.2 Cache Partitioning . 24

3 ♣ Profile-based Approach 26
3.1 Profile Analysis . 26
3.2 Static Information . 27

3.2.1 Basic Blocks . 27
3.2.2 Loop Information . 27
3.2.3 Addressing Modes . 28
3.2.4 Address Segment . 28

3.3 Derived Information . 28
3.3.1 Number of Hits Profile . 28
3.3.2 Reuse Distance Profile . 29
3.3.3 Active Load/Store Instructions . 30
3.3.4 Distinct Load/Store PCs . 30

3.4 Load/Store Classification . 30

3

3.4.1 Strided Accesses . 30
3.4.2 Pointer Accesses . 31
3.4.3 Static Accesses . 31

3.5 Profile-based Algorithm . 31
3.6 Partial Regular Expressions . 34

3.6.1 Distinct Load/Store PCs . 34
3.6.2 Control Point Counts . 34
3.6.3 Closest Loop Counts . 34

3.7 Replacement Condition Filtering . 34
3.7.1 Set-associative Distance . 34
3.7.2 Fully-associative Distance . 35
3.7.3 VC-based Distance . 35

3.8 Replacement Condition Selection . 35
3.8.1 Subset Removal . 35
3.8.2 Max Times . 35
3.8.3 One Regular Expression . 35

3.9 Annotation Generation . 35
3.9.1 Instruction Choices . 35
3.9.2 Instruction Assignment . 35
3.9.3 Annotation Points . 35

4 MI-LRU Replacement Mechanism 36
4.1 Introduction . 36
4.2 Basic Concepts . 37

4.2.1 Dead Blocks . 37
4.2.2 Kill a Block . 38
4.2.3 Keep a Block . 38

4.3 Mechanisms . 38
4.3.1 ♣ Kill with LRU . 38
4.3.2 Kill and Keep with LRU . 42
4.3.3 Kill and Prefetch with LRU . 45

4.4 Theoretical Results . 46
4.4.1 Kill+LRU Theorem . 46
4.4.2 Kill+Keep+LRU Theorem . 49
4.4.3 Kill+LRU with Prefetching Theorems 51

5 MI-LRU Implementation 53
5.1 Implementation . 53

5.1.1 Intuition behind Signatures . 54
5.1.2 Hardware-based Kill+LRU Replacement 54

5.1.2.1 Signature Functions . 55
5.1.2.2 Storing Signatures . 56

5.1.3 Software-assisted Kill+LRU Replacement 58
5.1.3.1 Kill Predicate Instructions 59
5.1.3.2 Profile-based Algorithm . 61

4

6 ♣ Combining MI-LRU with Keep and Prefetching 64
6.1 Keep with Kill+LRU Replacement . 64

6.1.1 Profile-based Keep Algorithm . 65
6.1.2 Keep Candidates Selection . 65
6.1.3 Keep Decay Options . 65
6.1.4 Keep Instructions . 65

6.2 Prefetching with Kill+LRU Replacement . 65
6.2.1 Hardware Prefetching . 66
6.2.2 Predictor-based Prefetching . 66
6.2.3 Prefetch Correlation with Kill+LRU Replacement 67

7 ♣ New Instructions 68
7.1 Type of Cache Control Commands . 68
7.2 Instruction Descriptions . 69
7.3 Hint-based Instructions . 69
7.4 Condition-based Instructions . 69
7.5 Range-based Instructions . 69
7.6 Run-time Support . 70

7.6.1 Modified Code . 70
7.6.2 Annotation Cache . 70

7.7 ALPHA Implementation Options . 71
7.7.1 Unused Fields . 71
7.7.2 Unused Opcodes . 71
7.7.3 PAL codes . 71

8 Disjoint Sequences and Cache Partitioning 72
8.1 Introduction . 72
8.2 Theoretical Results . 73

8.2.1 Definitions . 73
8.2.2 Disjoint Sequence Merge Theorem 73
8.2.3 Concatenation Theorem . 77
8.2.4 Effect of Memory Line Size > One Word 78

8.3 Partitioning with Disjoint Sequences . 78
8.3.1 Non-Disjointness Example . 78
8.3.2 Two Sequence Partitioning Example 79
8.3.3 Partitioning Conditions . 80

8.4 Information for Partitioning . 81
8.4.1 Cache Usage . 81
8.4.2 Sequence Footprints . 81
8.4.3 Sequence Coloring . 81

8.5 Static Partitioning . 82
8.5.1 Algorithm . 82
8.5.2 Hardware Support . 84
8.5.3 Software Support . 86

8.6 Partitioning and Prefetching . 87
8.7 Experiments . 87
8.8 Hardware Cost . 87

5

9 ♣ Evaluation 88
9.1 Simulation Framework . 88

9.1.1 Profile-based Analysis . 88
9.1.2 Annotation Support . 88

9.2 Benchmarks . 89
9.2.1 Spec2000 . 90
9.2.2 Multimedia and Mibench . 90

9.3 Inputs . 90
9.3.1 Train . 91
9.3.2 Test . 91

9.4 Application Phases . 91
9.4.1 Simpoint Phase1 . 92
9.4.2 Simpoint Phase2 . 92

9.5 Simulation Length . 92
9.5.1 100 Million . 92
9.5.2 1000 Million . 92

9.6 Processor Types . 92
9.6.1 Superscalar Inorder . 92
9.6.2 Superscalar Out-of-order . 92

9.7 Cache Configurations . 92
9.7.1 Cache Size . 92
9.7.2 Associativity . 92
9.7.3 Block Size . 92

9.8 MI-LRU Evaluation . 92
9.8.1 Hardware-based Kill+LRU Experimental Results 92
9.8.2 Analysis . 94

9.9 MI-LRU+Keep Evaluation . 94
9.10 MI-LRU+Prefetching Evaluation . 94
9.11 Static Partitioning Evaluation . 94
9.12 Profile-based Instructions Overhead . 94

9.12.1 Static Instruction Overhead . 94
9.12.2 Dynamic Instruction Overhead . 94

9.13 SW/HW Cost vs. Performance Trade-off Analysis 94
9.13.1 Hardware Table Sizes . 94
9.13.2 Block-associated Sizes . 94

10 Related Work 95
10.1 Memory Exploration in Embedded Systems 95
10.2 Cache Architectures . 96
10.3 Locality Optimization . 96
10.4 Cache Management . 97
10.5 Replacement Policies . 98
10.6 Prefetching . 98
10.7 Cache Partitioning . 99

6

11 Conclusion 103
11.1 Summary . 103
11.2 Extensions . 104

11.2.1 Kill+LRU Replacement for Multiple Processes 104
11.2.2 Disjoint Sequences for Loop Transformations 104
11.2.3 Hardware-based Cache Mechanisms 105
11.2.4 Profile-based Memory Exploration System 105
11.2.5 Kill+Prefetch at L2 level . 105

7

List of Figures

1-1
√

Embedded System and On-chip Memory 13

2-1
√

Overview of the Mechanisms . 21
2-2

√
Overview of Intelligent Replacement . 21

2-3
√

Overview of Cache Partitioning . 22
2-4

√
Overall Flow . 22

3-1 � Basic Block Information . 28
3-2 Memory Access Addressing Mode Profile of Spec2000 Benchmarks 29
3-3 Memory Access Address Segment Profile of Spec2000 Benchmarks 30
3-4 Percentage of blocks with number of hits less than or equal to block size

before replacement of Spec2000 Benchmarks 31
3-5 � Reuse Distance Profile . 32
3-6 Percentag of replaced blocks with accesses only by a sinlge PC 32
3-7 Percentag of replaced blocks with Single AM accesses and Hits less than or

equal to Block Size . 33
3-8 � Profile-based KILL Algorithm . 33

4-1
√

LRU and OPT replacement misses for Spec2000FP and Spec2000INT
benchmarks using sim-cheetah . 36

4-2 LRU and OPT Miss Rates for Mediabench and Mibench 37
4-3

√
Kill+LRU Replacement Policy . 39

4-4 OPT Improvement and Estimated Improvement Based on Profile data and
Uniform Distance Model . 41

4-5
√

Kill+Keep+LRU Replacement Policy . 43
4-6

√
Integrating Prefetching with Modified LRU Replacement 46

5-1
√

Hardware-based Kill+LRU Replacement 53
5-2

√
Signature-based Hardware Kill Predicates 55

5-3
√

Hardware for Reuse Distance Measurement 58
5-4

√
Software-assisted Kill+LRU Replacement Hardware 58

5-5
√

Kill Range Implementation Hardware . 60

6-1 � Profile-based KEEP Algorithm . 65
6-2

√
Prefetching with Kill+LRU Replacement 65

7-1 � Hardware Condition-based Trigger Implementation 69
7-2 � Range Block Count-based Implementation 70

8-1
√

Two Sequence Partitioning . 80

8

8-2
√

Clustering Algorithm . 83
8-3

√
Hardware Support for Flexible Partitioning 84

8-4 Cache Tiles for Cache Partitioning . 85
8-5 � Profile-based Partitioning Algorithm . 87

9-1 SPEC2000 Multiple Standard 100M Simpoints: SP1 and SP2 91

9

List of Tables

7.1 New Instructions . 69

8.1
√

Non-disjoint Sequences Example . 79

9.1
√

Benchmarks and Descriptions . 89
9.2

√
Mediabench and Mibench Benchmarks and Descriptions 90

9.3
√

System Configuration for Experiments 93
9.4

√
Hardward-based Kill+LRU Miss rates for Spec2000, Mediabench, and

Mibench Benchmarks. Spec2000 results based on 16KB, 4-way, 32-byte
blocks DL1 and Mibench and Mediabench results based on 8KB, 4-way, 32-
byte blocks DL1. 93

9.5
√

Hardward-based Kill+LRU Miss rates for Spec2000, Mediabench, and
Mibench Benchmarks. Spec2000 results based on 16KB, 4-way, 32-byte
blocks DL1 and Mibench and Mediabench results based on 8KB, 4-way, 32-
byte blocks DL1. 93

9.6
√

Hardward-based Kill+LRU Prediction Accuracy and Coverage for Spec2000,
Mediabench, and Mibench Benchmarks . 94

10

Chapter 1

Introduction

1.1 Motivation

There has been tremendous growth in the electronics and the computing industry in recent

years fueled by the advances in semiconductor technology. Electronic computing systems are

used in diverse areas and support a tremendous range of functionality. These systems can be

categorized into general-purpose systems or application-specific systems. The application-

specific systems are also called embedded systems. General-purpose systems (e.g., desktop

computers) are designed to support many different application domains. On the other hand,

most embedded systems are typically designed for a single application domain. Embedded

systems are used in consumer electronics products such as cellular phones, personal digital

assistants, and multimedia systems. In addition, embedded systems are used in many other

fields such as automotive industry, medical sensors and equipment and business equipment.

Embedded systems are customized to an application domain to meet performance, power,

and cost requirements. This customization feature makes the embedded systems popular

as evidenced by their use in a wide range of fields and applications.

Current submicron semiconductor technology allows for the integration of millions of

gates on a single chip. As a result, different components of a general-purpose or an em-

bedded system can be integrated onto a single chip. The integration of components on a

single chip offers the potential for improved performance, lower power, and reduced cost.

But, the ability to integrate more functionality onto a chip results in increased design com-

plexity. While technologically feasible, it is still impractical and uneconomical to design an

entire embedded system in a single custom integrated circuit. Most embedded systems use

11

both programmable components, Field Programmable Logic, and application-specific inte-

grated circuit (ASIC) logic. The programmable components are called embedded processors.

These embedded processors can be general-purpose microprocessors, off-the-shelf digital sig-

nal processors (DSPs), in-house application specific instruction-set processors (ASIPs), or

micro-controllers. Typically, the time-critical functionality is implemented as an ASIC and

the remaining functionality is implemented in software which runs on the embedded pro-

cessor. Figure 1-1 illustrates a typical embedded system, consisting of a processor, DSP,

or an ASIP, a program ROM, RAM, application-specific circuitry (ASIC), and peripheral

circuitry.

The ASIC logic provides the performance and predictability for the time-critical func-

tionality in an embedded system. But, design cycles for ASIC logic can be long and design

errors may require a new chip to correct the problem. On the other hand, the software im-

plementations can accommodate late changes in the requirements or design, thus reducing

the length of the design cycle. The software can also help in the product evolution – simply

changing the software may be enough to augment the functionality for the next generations

of a product. Due to the need for short design cycles and the flexibility offered by software,

it is desirable that an increasing amount of an embedded system’s functionality be imple-

mented in software relative to hardware, provided the software can meet the desired level

of performance and predictability goals.

The software that runs on the embedded processor is supported by on-chip data memory

which may be used as a cache and/or scratch-pad SRAM. The goal of this thesis is to bring

the performance and predictability of software closer to that offered by an ASIC in an

embedded system. This is achieved by focusing on the on-chip memory component of the

embedded system. Problems with embedded memory systems are described in the following

sections. I target performance and predictability improvement of on-chip memory through

the development of new intelligent hardware mechanisms. Some of these mechanisms make

use of application-specific information obtained from application traces and incorporate

that information in the form of additional instructions or hints in the executable. The

mechanisms are explored in the context of embedded systems but are equally applicable to

general-purpose systems.

12

DRAM

Off−chip Memory

D−Cache SRAM

ProcessorPeripherals ASIC

I−Cache/
ROM

On−chip Memory

Figure 1-1:
√

Embedded System and On-chip Memory

1.2 Embedded Memory Systems

In many embedded systems, simple pipelined processors (e.g., ARM9TDMI [1]) are used

along with on-chip memory. The on-chip static memory, in the form of a cache or an SRAM

(scratch-pad memory) or some combination of the two, is used to provide an interface be-

tween hardware and software and to improve embedded system performance. Most systems

have both on-chip cache and SRAM since each addresses a different need. The components

of an on-chip memory in an embedded system are shown in Figure 1-1. The effective uti-

lization of the caches and on-chip SRAMs can lead to significant performance improvement

for embedded systems.

Typically, the processor and on-chip memory are used as decoupled components. The

only communication between the processor and the on-chip memory is through load/store

operations. The on-chip memory serves as data storage for the processor and data is read

from or written to an address provided by the processor. On-chip memory when used as a

cache serves as transparent storage between the processor and the off-chip memory since it is

accessed through the same address space as the off-chip memory. The processor read/write

requests are served from the on-chip cache provided the data is in the cache, otherwise data

is brought into the cache from the off-chip memory. The hardware management logic handles

data movement and some other functions to maintain transparency. On-chip memory when

13

used as an SRAM does not have any hardware management logic and the data movement

is controlled through software.

Typically, on-chip memory simply responds to the access requests by the processor. The

processor does not communicate any application-specific information to the on-chip memory.

There is little or no software control or assistance to the hardware logic to manage the cache

resources effectively.

I consider the on-chip memory to be intelligent, if there is some hardware logic associated

with the on-chip memory either to manage the data storage or to perform some computation.

So, an on-chip associative cache has some intelligence, for example, to make replacement

decisions, and the on-chip SRAM is not intelligent. There are several problems associated

with the use of caches and SRAM when they are used as on-chip memory for an embedded

systems. The specific problems addressed in this thesis are described in the next section.

My primary focus in this thesis is on the development of intelligent hardware mechanisms

for on-chip memory that address these problems.

1.3 Research Problems

1.3.1 Cache Performance

Caches are used to improve the average performance of application-specific and general-

purpose processors. Caches vary in their organization, size and architecture. Depending

on the cache characteristics, application performance may vary dramatically. Caches are

valuable resources that have to be managed properly in order to ensure the best possible

program performance. For example, cache line replacement decisions are made by the

hardware replacement logic using a cache replacement strategy. The most commonly used

replacement strategy is the Least Recently Used (LRU) replacement strategy and its cheaper

approximations, where the cache line that is judged least recently used is evicted. It is

known, however, that LRU does not perform well in many situations, such as streaming

applications and timeshared systems where multiple processes use the same cache.

The cache performance directly affects the processor performance even in superscalar

processors where the latency of a cache miss can be hidden by scheduling other ready-

to-execute processor instructions. Current caches in embedded systems and most general-

purpose processors are largely passive and reactive in terms of their response to the access

14

requests. Moreover, current caches don’t use application-specific information in managing

their resources. and there is very little software control or assistance with hardware support

to manage the cache resources effectively. As a result the caches do not perform well for

many applications.

The performance of a cache can be measured in terms of its hit or miss rate. A miss in

a cache can be either a cold miss, a conflict miss, or a capacity miss. Conflict and capacity

misses can sometimes be avoided using different data mapping techniques or increasing the

associativity of the cache. Cold misses can be avoided using prefetching, i.e., predicting

that the processor will make a request for a data block, and bringing the data in before it is

accessed by the processor. There have been several attempts to improve cache performance

and my approach draws on previous work but also extends it significantly.

1.3.2 Cache Predictability

Caches are transparent to software since they are accessed through the same address space

as the larger backing store. They often improve overall software performance but can be un-

predictable. Although the cache replacement hardware is known, predicting its performance

depends on accurately predicting past and future reference patterns.

One important aspect to cache design is the choice of associativity and the replacement

strategy, that controls which cache line to evict from the cache when a new line is brought

in. LRU does not perform well in many situations, including timeshared systems where

multiple processes use the same cache and when there is streaming data in applications.

Additionally, the LRU policy often performs poorly for applications in which the cache

memory requirements and memory access patterns change during execution. Most cache

replacement policies, including LRU, do not provide mechanisms to increase predictabil-

ity (worst-case performance), making them unsuited for many real-time embedded system

applications.

1.3.3 Cache Pollution with Prefetching

One performance improvement technique for caches is data prefetching where data that is

likely to be used in the near future is brought into the cache before its use. So, when the

prefetched data is accessed, it results in a hit in the cache. Prefetching methods come in

many different flavors, and to be effective they must be implemented in such a way that

15

they are timely, useful, and introduce little overhead [183]. But, prefetching can lead to

cache pollution because a prematurely prefetched block can displace data in the cache that

is in use or will be used in the near future by the processor [23]. Cache pollution can become

significant, and cause severe performance degradation when the prefetching method used is

too aggressive, i.e., too much data is brought into the cache, or too little of the data brought

into the cache is useful. It has been noted that hardware-based prefetching often generates

more unnecessary prefetches than software prefetching [183]. Many different hardware-

based prefetch methods have been proposed; the simple schemes usually generate a large

number of prefetches, and the more complex schemes usually require hardware tables of

large sizes.

1.4 Thesis Contributions

I propose to make the on-chip memory (cache and SRAM) intelligent by using new hardware

mechanisms. The mechanisms address the different problems I described that are associated

with on-chip cache and SRAM. The mechanisms enhance the capabilities of the on-chip

memory in terms of better data storage management, computation support, and improved

performance and predictability.

The contributions of this thesis consist of three mechanisms to address the problems

associated with the use of caches and on-chip SRAM in an embedded system. The specific

contributions are as follows:

1.4.1 Intelligent Cache Replacement

The LRU cache replacement policy is augmented with additional information to make more

intelligent replacement decisions. In particular, a kill state and a keep state is used along

with the LRU information to create an intelligent replacement policy. In this context, the

contributions are:

• Theoretical analysis: The conditions are derived and proved which guarantee that

the number of misses in the intelligent cache replacement mechanism are less than the

LRU replacement policy for the fully-associative and set-associative caches. Similar

theorems are also proven for the case where an additional keep state information is

16

combined with the intelligent replacement mechanism. Some additional results are

derived when prefetching is combined with the intelligent replacement mechanism.

• Hardware Mechanisms: Some hardware mechanisms are designed to approximate

the conditions to set the kill state information. In particular, the hardware mecha-

nisms based on history signature functions and reuse distance are designed and im-

plemented in a Simplescalar [18] simulator. Kill state information is used to control

cache pollution caused by an aggressive hardware prefetch scheme. The intelligent

replacement mechanism supported by the hardware mechanisms is evaluated alone

and with prefetching on the Spec2000 benchmarks.

• Software-assisted Mechanisms: Some software-assisted mechanisms are designed

that incorporate application-specific information in the form of hints and control in-

structions to support the intelligent replacement mechanisms. A profile-based ap-

proach is used to derive and incorporate the necessary information into the applica-

tion code. These mechanisms are also implemented in the Simplescalar simulator and

evaluated alone and with prefetching on the Spec2000 benchmarks.

1.4.2 Disjoint Sequences and Cache Partitioning

I propose the concept of disjoint sequences that is used to analyze memory access sequences

and transform an access sequence into a concatenation of disjoint access sequences. This

result is used as a basis for cache partitioning mechanisms and a static cache algorithm to

address the problems of cache performance, cache predictability, or cache pollution due to

prefetching. The specific contritbutions are:

• Theorems: I proved theorems which show that changing an access sequence into

a concatenation of disjoint access sequences and applying the concatenated access

sequence to the cache is guaranteed to result in improved hit rate for the cache.

I use this result to derive partitioning conditions which guarantee the that cache

partitioning leads to the same or less number of misses than the unpartitioned cache

of the same size.

• Partitioning Mechanisms: Several partitioning mechanisms are designed and ex-

plored which use the concept of disjoint sequences. In particular, the partitioning

17

mechanisms are based on a modified LRU replacement, cache tiles, and multi-tag

sharing approach. In addition to the hardware mechanisms a static partitioning algo-

rithm is developed which uses the hardware mechanisms for cache partitioning. The

cache partitioning mechanisms are implemented in the Simplescalar simulator and

evaluated with and without prefetching on the Spec2000, Mibench, and Mediabench

benchmarks. The static cache partitioning results and more details are presented in

Chapter 8.

1.5 Thesis Organization

In Chapter 1, the performance bottlenecks of current processors is outlined and research

problems are identified and thesis contributions are summarized.

In Chapter 2, a brief overview of the new mechanisms is given along with the overall

approach to implement and evaluate the mechanisms. The simulation framework and the

benchmarks used for evaluation are also described in this chapter.

In Chapter 3, the profile-based approach is described in detail. The types of informa-

tion collected from the profile runs is described, along with the profile-based annotation

generation algorithm that uses the profile-based information.

In Chapter 4 and 5, the details of the intelligent cache replacement mechanism are

described. In particular, the theorems, the hardware and software assisted mechanisms,

implementation of the mechanisms, and evaluation of the intelligent cache replacement

mechanism are presented.

In Chapter 6, the combination of the MI-LRU with Keep mechanism and MI-LRU

mechanism with prefetching is considered in detail. The Keep algorithm along with the

Keep selection and Keep decay options are described as part of the Keep mechanism. The

two prefetching schemes considered for the combination with the MI-LRU are described

with the hardware required to implement these schemes. The benefits of combining MI-

LRU with Keep and prefetching are evaluated in Chapter 9.

In Chapter 7, the new instructions in the context of the proposed cache mechanisms are

described in detail. The different fields of the instructions along with the instruction formats

are shown for the new instructions. The possible hardware support logic is described for

some of the instructions that require the hardware support.

18

In Chapter 8, the concept of disjoint sequences, a theoretical result on the hit rates

achieved by disjoint sequences, a relationship between disjoint sequences and cache parti-

tioning, and details of the hardware and software aspects of partitioning mechanisms are

presented along with the evaluation of mechanisms.

In Chapter 9, the evaluation of the proposed cache mechanisms is described using as

subset of Spec2000, Mediabench, and Mibench benchmarks under different scenerios.

In Chapter 10, related work in the context of the intelligent cache replacement mecha-

nism, cache partitioning, and intelligent SRAM is summarized. In Chapter 11 a summary

of the thesis is followed by some example scenarios of combinations of mechanisms and

possible extensions to the work presented in this thesis.

19

Chapter 2

Overview of Approach

2.1 Architecture Mechanisms

I propose approaches to make on-chip memory intelligent by adding additional hardware

logic and state to/near on-chip memory and by increasing the communication between the

processor and the on-chip memory. Application-specific information is communicated to the

on-chip memory hardware logic in different ways, as I elaborate on below. These enhance-

ments to the capability of the on-chip memory improve the on-chip memory performance,

which in turn improves embedded system performance.

The software support for the mechanisms is provided in the form of processor to on-

chip Memory communication. Additional information may be supplied to the memory

based on the application-specific information gathered during the program analysis. The

following methods are used to increase the interaction between the application and the

on-chip memory.

• hints: these are hints in the application code to communicate some specific infor-

mation to the on-chip memory. Such information is used by the hardware support

logic.

• control: these are specific controls that augment the state of some on-chip memory

resources.

• processor information: this is processor state conveyed to the on-chip memory

(e.g., branch history, load/store type).

20

Kill+LRU
Replacement

based
Hardware− Software−

assisted set−based

Flexible Cache

Partitioning

way−based

Cache Mechanisms

Kill+LRU Repl. Kill+LRU Repl.
with Prefetchingwith Keep

Figure 2-1:
√

Overview of the Mechanisms

TAG TAG
State State

INSTR
Hint

Replacement Logic

LOGIC

SUPPORT

HARWARE

D−CacheI−Cache

Figure 2-2:
√

Overview of Intelligent Replacement

Each mechanism I propose targets a particular problem associated with using the simple

on-chip memory. An intelligent on-chip memory would consist of support for one or more

mechanisms. The mechanisms differ in terms of the required hardware support, processor

to on-chip memory communication, and additional state information. The mechanisms

described in this thesis are targetted for the use of on-chip memory as a cache where the

intelligent on-chip cache would have more intelligent management of the cache resources.

The taxonomy of the proposed mechanisms is shown in Figure 2-1. A brief overview of the

mechanisms is given below and the details of the mechanisms are discussed in the following

chapters.

An overview of the intelligent replacement mechanism is shown in Figure 2-2. The data

cache is augmented to have some additional state information and modified LRU replace-

ment logic. The intelligent cache replacement mechanism can use either the hardware-based

21

TAG TAG
State State

INSTR
Hint

Replacement Logic

D−CacheI−Cache

Partitioning

Logic

Support

D−AddrI−Addr

Figure 2-3:
√

Overview of Cache Partitioning

Simulator Results
Performance

Object CodeSource Code
Benchmark

Mechanism

Compiler

Profile

Analysis
Annotation
Information

Input_1

Input_2

Figure 2-4:
√

Overall Flow

or software-assisted augmentation of the LRU replacement strategy.

The cache pollution due to aggressive hardware prefetching is measured for the LRU

replacement and the Intelligent cache replacement is also explored in the context of reducing

cache pollution when used with sequential hardware prefetching, an aggressive prefetch

method.

In order to use the cache space effectively, a flexible cache partitioning approach based

on disjoint sequences is explored in this thesis. A high-level overview of the cache par-

titioning is shown in Figure 2-3. The cache partitioning related information is derived

using profile-based analysis or dynamically in hardware. The profile-based information is

conveyed through some hints or additional instructions.

22

2.2 Evaluation Methodology

2.2.1 Overall Flow

The overall flow of information for the intelligent on-chip memory is shown in Figure 2-

4. There are two major steps in providing the software support for different mechanisms.

First, the program is analyzed to gather information about the application. Second, the

information about the application is incorporated into the program generated code. The

type of analysis and modification differs for the on-chip cache mechanisms.

2.2.2 Program Analysis

Two ways of program analysis considered here are static analysis and profile analysis.

Static analysis uses the intermediate representation of the source code of the program

to analyze the program and provides information about the control and data flow of the

program. Static analysis cannot easily determine program behaviors that are dependent on

input data. Profile analysis of the program uses a training input data set and gets program

related information that may not be available from the static analysis. The analysis of the

program identifies the points in the program where useful information can be communicated

to the underlying hardware logic for the chosen mechanism.

2.2.3 Program Code Modification

Program code is annotated with the appropriate instructions to communicate the informa-

tion gathered from program analysis. The program can be modified in two ways: annota-

tions are introduced during the program code generation, or annotations are introduced into

the assembly code after code generation. The code modification approach may depend on

the analysis approach used. These modifications to the code use the underlying hardware

for the mechanisms at run-time.

2.2.4 Simulation Framework

The cache mechanisms are implemented in the Simplescalar [18] simulator by modifying

some existing simulator modules and adding new functionality for each of the new mecha-

nisms. The simulator is also modified to handle the annotations appropriate for each of the

software-assisted mechanisms.

23

2.2.5 Benchmarks

The intelligent cache replacement mechanism is evaluated using the Spec2000 benchmarks.

The Spec2000 benchmarks consist of the SpecInt2000 - integer benchmarks and SpecFP2000

- floating-point benchmarks.

2.3 Evaluation of the Mechanisms

The cache mechanisms are implemented in the Simplescalar simulator. The information

necessary for the hints and control instructions is derived using profile-based analysis. The

hints and control instructions are associated with a PC and written to an annotation file.

The hints and control instructions are conveyed to the Simplescalar simulator using this

annotation file and stored in a PC-based table in the Simplescalar simulator. Some of the

processor related information is conveyed to the cache module using the modified cache

module interface. A brief description of the implementation and evaluation of the mecha-

nisms is given below.

2.3.1 Intelligent Cache Replacement

The cache module of the Simplescalar was modified with additional state bits and a new

replacement policy. The hardware-based intelligent replacement uses some tables in the sim-

ulator to maintain and use dynamically generated information. For the software-assisted

intelligent replacement, the PC-based table is used in conjunction with the hardware struc-

tures. The intelligent cache replacement mechanism is evaluated in stand-alone fashion and

with prefetching. The prefetching method is implemented in the Simplescalar simulator and

is combined with the replacement mechanism to evaluate the reduction in cache pollution

with the intelligent replacement mechanism.

2.3.2 Cache Partitioning

The cache module of the Simplescalar simulator was modified to add partitioning related

state bits in the cache structures. Also some hardware structures necessary to maintain

partitioning related information were implemented into the Simplescalar. The partition-

ing mechanism also makes use of the profile-based information using the PC-based table

24

and data range-based tables. The partitioning mechanism was evaluated alone to evalu-

ate performance and predictability offered by this mechanism. It was also evaluated with

prefetching to measure the effectiveness in reducing cache pollution.

25

Chapter 3

♣ Profile-based Approach

The goal is to provide more information to the cache memory system in making certain cache

management decisions. In the profile-based approach the application information is derived

through some runs using training or test inputs. The derived application information is

used in the cache management in the form of hints, control instructions, and hardware

assistance to make cache management decisions. For example, the annotations can provide

information to choose signature function and signature table index (hash function) in an

approach that uses signatures to predict and augment the cache replacement decisions.

I focus on the profile-based approach instead of a hardware-based approach because

collecting information in hardware can take hardware resources, the collected information

can be kept for a limited time. If the load/store instruction or cache block for which the

information is collected is not used again, the information collection is too late for that

instance. In some cases, if the accesses are predictable, the necessary information can

be collected for one cache set and used to predict the behavior for the other cache sets

associated with the load/store instruction of interest. For the parts of the program that do

not have the profile-based information only static information is used in making the cache

related decisions.

3.1 Profile Analysis

Instead of static analysis, profile-based analysis is performed. Some of the static information

is obtained or derived through the application runs on the test, train, and reference inputs.

I use the profile information derived offline in the profile-based algorithms, but the profile

26

information can also be derived online in a dynamic profiling hardware. The advantage

of offline profile information is that it requires less hardware and gives more leverage in

deriving the application specific information.

The profile information to be gathered can be data-dependent or data-independent.

The data-independent information is static in nature, e.g., load/store type, loop backward

branch targets, loop end marker branches. The data-dependent information may vary with

inputs, but can provide the information about the relative variations, e.g., reuse distance

information for a block above some threshold, condition for marking cache blocks for re-

placement, last use of variables. The profile-based annotations can lead to small overhead

in terms of the static code size, fetch and issue bandwidth, and the instruction cache.

3.2 Static Information

The profile-based static information about the program is collected, but this information

ideally can be obtained through compiler analysis.

3.2.1 Basic Blocks

A basic block is defined as a sequence of non-control instructions that terminate in a control

(branch, call, or return) instruction. For the analysis of interest, I collect the load/stores of

basic blocks.

The basic blocks whose control points are branches are used in deriving the loop infor-

mation for the programs.

3.2.2 Loop Information

The source-level loop boundaries may not correspond directly to the ones in the compiled

program due to compiler optimizations. Also, the annotations are obtained for the compiled

program. So, I chose to obtain the loop information from the compiled programs. I derive

the loop information from the analysis of the branch targets on the program inputs of

interest. This information can also be obtained from the static analysis of the compiled

programs.

The branches that don’t have any forward branch targets and have only backward branch

targets and possibly next pc target are considered loop branches.

27

Figure 3-1: � Basic Block Information

The loop information is used to identify the annotation points for range-based instruc-

tions. The annotation points are loop entry and loop exit points.

3.2.3 Addressing Modes

The addressing mode of a load/store instruction provides help in the analysis and classifi-

cation of the accesses.

In the Alpha architecture, there are four address modes that are used. The Global

Pointer-based (gp+const) mode uses the gp (r29). The Stack Pointer-based (sp+const)

mode uses the sp (r30). The Frame Pointer-based (fp+const) mode uses the fp (r15). The

other register based (reg+const) mode uses the integer register. The static load/stores that

always access the same address are determined for each addressing mode separately.

3.2.4 Address Segment

3.3 Derived Information

3.3.1 Number of Hits Profile

The blocks with spatial accesses, the number of hits before replacement is relatively small

compared to the blocks with temporal accesses. Also, the load/store instructions with spa-

tial accesses the number of hits before replacement is clustered around a small number. This

28

Addressing Mode Profile

0%

20%

40%

60%

80%

100%

am
m

p
ap

pluap
si ar

t

bz
ip2

cr
af

ty
eo

n

eq
ua

ke

fa
ce

re
c

ga
p

gc
c
gz

ip
m

cf

m
es

a
m

gr
id

pa
rs

er

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wise

Benchmark

M
em

o
ry

 A
cc

es
se

s

rg+const
fp+const
sp+const
gp+const

Figure 3-2: Memory Access Addressing Mode Profile of Spec2000 Benchmarks

information may not be used directly, but it provides the information about the cache blocks

and the associated load/store instructions that can be targets for profile-based annotations.

3.3.2 Reuse Distance Profile

The reuse distance d between the two accesses to the same block b is the number of distinct

blocks d between the two accesses. It also determines the increase in hit rate as associativity

is increased keeping other cache parameters constant. The reuse distance information can

assist in making replacement decisions as shown later.

The reuse distance can be assigned to load/store instructions, data block addresses, or

data ranges. I measure the set reuse distance profile for the cache blocks. The reuse distance

is measured as a replacement to miss distance for each cache block. The distribution of

reuse distances upto a reuse distance dmax is measured for the cache blocks. It gives the

information about the percentage of blocks falling a given reuse distance category. The

cumulative distribution of the reuse distances gives the information about the percentage

of blocks with the reuse distance below a given distance.

29

Address Segment Profile

0%

20%

40%

60%

80%

100%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

p
gc

c
gz

ip
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e

Benchmark

%
 o

f
M

em
o

ry
 A

cc
es

se
s

text_seg
stack_seg
heap_seg
data_seg

Figure 3-3: Memory Access Address Segment Profile of Spec2000 Benchmarks

3.3.3 Active Load/Store Instructions

The number of load/store instructions that miss in the cache is small compared to the

total number of load/store instructions. This allows the association of with the load/store

instructions for annotations. Some examples of the type of information that can be main-

tained with the load/store instructions are: stride, reuse distance, number of hits before

replacement, etc.

>>> block accesses Miss-hit-hit..Miss-hit...Miss-hit-hit.......Miss description/diagram

3.3.4 Distinct Load/Store PCs

3.4 Load/Store Classification

3.4.1 Strided Accesses

A stride s is the difference Addrx − Addry between two consecutive addresses Addrx and

Addry accessed by a load/store instruction. Stride s = si+1 is registered, if it is encountered

twice in a row, i.e., si+1 == si, where si+1 = Addri+1 − Addri and si = Addri − Addri−1.

30

 0

 20

 40

 60

 80

 100

w
up

w
is

e

vp
r

vo
rt

ex

tw
ol

f

sw
im

si
xt

ra
ck

pe
rlb

m
k

pa
rs

er

m
gr

id

m
es

a

m
cf

gz
ip

gc
c

ga
p

fa
ce

re
c

eq
ua

ke

eo
n

cr
af

ty

bz
ip

2

ar
t

ap
si

ap
pl

u

am
m

p

P
er

ce
nt

 o
f R

ep
la

ce
d

B
lo

ck
s

Benchmark

Percentage of Blocks with Hits less than or equal to Block Size

Figure 3-4: Percentage of blocks with number of hits less than or equal to block size before
replacement of Spec2000 Benchmarks

3.4.2 Pointer Accesses

3.4.3 Static Accesses

3.5 Profile-based Algorithm

The goal of the annotation selection algorithm is to use the profile-based information

to select the annotations such that they result in low static and dynamic overhead. The

instructions associated with the selected annotations are assigned at the annoation points

such as an instruction address or an loop boundary.

The algorithm uses the information about the disjoint ranges (load/store based or ad-

dress range based) and it decides when to use a range-based instruction. One way to choose

range-based instruction is when load/store-based regular expressions cannot be reduced to

single regular expression then the algorithm looks for a range-based single regular expres-

sion.

31

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Set Stack Reuse Distance

ammp: Stack Reuse Distance Profile

100M
1B

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Set Stack Reuse Distance

gzip: Stack Reuse Distance Profile

100M
1B

Figure 3-5: � Reuse Distance Profile

 0

 20

 40

 60

 80

 100

w
up

w
is

e

vp
r

vo
rt

ex

tw
ol

f

sw
im

si
xt

ra
ck

pe
rlb

m
k

pa
rs

er

m
gr

id

m
es

a

m
cf

gz
ip

gc
c

ga
p

fa
ce

re
c

eq
ua

ke

eo
n

cr
af

ty

bz
ip

2

ar
t

ap
si

ap
pl

u

am
m

p

P
er

ce
nt

 o
f R

ep
la

ce
d

B
lo

ck
s

Benchmark

Percentage of Blocks with Single PC Access

Figure 3-6: Percentag of replaced blocks with accesses only by a sinlge PC

32

 0

 20

 40

 60

 80

 100

w
up

w
is

e

vp
r

vo
rt

ex

tw
ol

f

sw
im

si
xt

ra
ck

pe
rlb

m
k

pa
rs

er

m
gr

id

m
es

a

m
cf

gz
ip

gc
c

ga
p

fa
ce

re
c

eq
ua

ke

eo
n

cr
af

ty

bz
ip

2

ar
t

ap
si

ap
pl

u

am
m

p

P
er

ce
nt

 o
f R

ep
la

ce
d

B
lo

ck
s

Benchmark

Percentage of Blocks with Single AM Access and Hits LEQ Block Size

Figure 3-7: Percentag of replaced blocks with Single AM accesses and Hits less than or
equal to Block Size

1: Determine Load/store information
2: Choose Maximal subset
3: if One Reg Expr then
4: Assign Replacement Condition
5: end if

Figure 3-8: � Profile-based KILL Algorithm

33

3.6 Partial Regular Expressions

3.6.1 Distinct Load/Store PCs

3.6.2 Control Point Counts

The control point counts for each distinct load/store PC accessing a block are measured, if

a control point exists for the load/store PC accessing the block.

On a miss, for the block being replaced, the control point count is copied along with the

regular expression. For the incoming block, the start value of the number of times control

point is executed initialized as the current value of the number of times control point has

been executed so far. The control point count is initialized to 1 to be updated later on

subsequent possible hit(s).

On a hit, if the load/store PC is already part of the list of distinct PCs, then the control

point count is computed using the start value and the current value of the number of times

control point has been executed so far. If the load/store PC is a new distinct PC accessing

the block, the same action is taken as for the miss above for the incoming block.

3.6.3 Closest Loop Counts

The closest loop counts are measured in the same way as the control point counts are

measured as described above.

3.7 Replacement Condition Filtering

3.7.1 Set-associative Distance

mgrid benefits from filtering the regular expressions.

34

3.7.2 Fully-associative Distance

3.7.3 VC-based Distance

3.8 Replacement Condition Selection

3.8.1 Subset Removal

3.8.2 Max Times

3.8.3 One Regular Expression

3.9 Annotation Generation

In the annotation approach, first a set of cache instructions are chosen and either a static or

profile based program analysis is used to identify the annotation points and then appropriate

cache instructions are introduced at these annotation points in the program.

3.9.1 Instruction Choices

3.9.2 Instruction Assignment

3.9.3 Annotation Points

35

Chapter 4

MI-LRU Replacement Mechanism

4.1 Introduction

The LRU replacement policy is the most common replacement policy and it is the basis

of the intelligent cache replacement mechanism which offers miss rate improvement over

the LRU replacement policy. The miss rate improvement over the LRU replacement policy

offered by the intelligent replacement mechanism is limited by the miss rate of the Optimal

replacement policy(OPT) [10] because the OPT replacement policy gives a lower bound

on the miss rate for any cache. So, the intelligent replacement mechanism improves cache

and overall performance of an embedded system by bringing the miss rate of an application

closer to the miss rate using the OPT replacement policy.

Figure 4-1 shows the miss rates for the Spec2000FP and Spec2000INT benchmarks

respectively using the LRU and OPT replacement policies. The miss rates were obtained

Spec2000FP LRU, OPT Miss Rates: 32KB, 4-way, 32B

0

5

10

15

20

25

30

35

40

45

am
m

p
ap

plu ap
si

eq
ua

ke

fa
ce

re
c

m
es

a
m

gr
id

six
tra

ck

wup
wise

sw
im ar

t

Benchmark

M
is

s
R

at
e

%

LRU
OPT

Spec2000INT LRU, OPT Miss Rates: 32KB, 4-way, 32B

0

5

10

15

20

25

30

35

ga
p

gc
c

vp
r

tw
olf

vo
rte

x

pe
rlb

m
k

pa
rs

er
gz

ip
bz

ip2
cr

af
ty

eo
n

m
cf

Benchmark

M
is

s
R

at
e

%

LRU
OPT

Figure 4-1:
√

LRU and OPT replacement misses for Spec2000FP and Spec2000INT bench-
marks using sim-cheetah

36

Mediabench and Mibench LRU, OPT Miss Rates: 8KB, 2-way,
32B

0

2

4

6

8

10

12

14

16

jpeg_enc jpeg_dec ghostscript susan_s patricia rijndael fft

Benchmark

M
is

s
R

at
e

%
LRU
OPT

Figure 4-2: LRU and OPT Miss Rates for Mediabench and Mibench

using the Sim-cheetah simulator [168, 18]. For simulation one billion instructions were

simulated after skipping the first two billion instructions. The results show that for some

benchmarks there is potential for improvement in LRU miss rates.

In this chapter the intelligent replacement mechanism based on a modification of the

LRU replacement policy is described in detail. Some of the work described herein has been

published in [66]. First, the basic concepts of dead block, killing a block, and keeping a block

are presented in Section 4.2. Then, the intelligent replacement mechanisms based on these

concepts are presented in Section 4.3. The theoretical results for the intelligent replacement

mechanism are presented in Section 4.4. The implementation of the intelligent replacement

mechanism using hardware and software-assisted approaches is presented in Section 5.1.

The experimental results based on the application address traces is presented in Section ??

and ongoing work on experiments based on the mechanisms are listed in Section ??.

4.2 Basic Concepts

4.2.1 Dead Blocks

If there is a cache miss upon an access to a cache block b, the missed cache block b is brought

from the next level of the memory hierarchy. There may be one or more subsequent accesses

to the cache block b that result in cache hits. The cache block b is eventually chosen to be

evicted for another cache block as a result of the cache miss(es) that follow based on the

37

cache replacement policy. The cache block b is considered dead from its last cache hit to its

eviction from the cache.

4.2.2 Kill a Block

A cache replacement policy can use the information about dead blocks in its replacement

decisions and choose a dead block over other blocks for replacement. The dead block

information introduces a priority level in the replacement policy. If the last access to a

cache block b can be detected or predicted either statically or dynamically, then the cache

block b can be killed by marking it as a dead block. The condition that determines the

last access to a cache block is called a kill predicate. So, when the kill predicate for a cache

block is satisfied, the cache block can be killed by marking it as a dead block.

4.2.3 Keep a Block

In some cases it may be desirable have a cache block b higher priority than other blocks

in the cache so that a replacement policy would choose other blocks over the block b for

replacement. This can be accomplished by Keeping the block b in the cache by setting some

additional state associated with the block b.

4.3 Mechanisms

The LRU replacement policy is combined with the above concepts of dead block, killing a

block, and keeping a block to form the intelligent replacement mechanisms. In the following

description, an element refers to a cache block.

4.3.1 ♣ Kill with LRU

In this replacement policy, each element in the cache has an additional one-bit state (Kl)

called the kill state associated with it. The Kl bit can be set under software or hardware

control. On a hit the elements in the cache are reordered along with their Kl bits the same

way as in an LRU policy. On a miss, instead of replacing the LRU element in the cache,

an element with its Kl bit set is chosen to be replaced and the new element is placed at

the most recently used position and the other elements are reordered as necessary. Two

variations of the replacement policy to choose an element with the Kl bit set for replacement

38

Kl=1Kl=0

LRU Policy

Kill+LRU Policy

c b ea

LRU

Kl bits

KILL(b)

c b ea

a c eb

Access(c)

KILL(a)

Access(d)

b a ec

d c b e

d a c b

Figure 4-3:
√

Kill+LRU Replacement Policy

are considered: (1) the least recent element that has its Kl bit set is chosen to be replaced;

(2) the most recent element that has its Kl bit set is chosen to be replaced. The Kl bit is

reset when there is a hit on an element with its Kl bit set unless the current access sets the

Kl bit. It is assumed that the Kl bit is changed – set or reset – for an element upon an

access to that element. The access to the element has an associated hint that determines

the Kl bit after the access and the access does not affect the Kl bit of other elements in the

cache.

Figure 4-3 shows how the Kl bit is used with the LRU policy. It shows a fully-associative

cache with four elements. Initially, the cache state is {a, c, b, e} with all the Kl bits reset.

When b is killed (b is accessed and its Kl bit is set) b becomes the MRU element and the new

cache state is {b, a, c, e}. Then, c is accessed and a is killed. After a is killed, the cache state

is {a, c, b, e} and the Kl bits for a and b are set. When d is accessed, it results in a cache miss

and an element needs to be chosen for replacement. In the Kill+LRU replacement policy,

using the variation (2), the most recently killed element a is chosen for replacement and

the new cache state is {d, c, b, e}. If LRU replacement policy were used, the LRU element

39

e would be chosen for replacement and the new cache state would be {d, a, c, b}.

Kill with LRU and OPT Policy

Theorem 1 If the reuse distance among the killed blocks is the same, then the MRK LRU

(Most Recently Killed) variation (2) of the Kill+LRU replacement policy is equivalent to

the OPT replacement.

MRK-LRU based OPT Miss Rate Estimation

Consider a uniform reuse distance model where all the accesses have a distinct block reuse

distance d between two accesses to the same block. For a given associativity a and a uniform

reuse distance model with d such that d ≥ a, in steady-state the LRU replacement would

miss on every access resulting in miss rate 1.0 and the MRK-LRU would have the miss rate

1.0 − (a − 1)/d. So, the miss rate improvement of MRK-LRU over LRU is (a − 1)/d.

For example, given the access sequence {a, b, c, d, e, a, b, c, d, e, a, b, c, d, e, ...} where the

uniform reuse distance is 4 and assuming a 4-word fully-associative cache, the access se-

quence would result in a miss every fourth access in the steady-state (i.e., when the cache

reaches the full state from an initially empty state). For this example, the coressponding

miss-hit sequence is {m,m,m,m,m, h, h, h,m, h, h, h,m, h, h, ...}.
The above uniform reuse distance model can be used estimate the miss rate improvement

for a given program if the reuse distance profile of the program is available. Suppose the

distribution of the reuse distances for a program is such that Wd is the weight for a reuse

distance d ≥ a, for a given associativity a. The miss rate improvement can be estimated

using the following formula based on the uniform reuse distance model:

MRImpv = (a − 1) ×
dmax∑

d=a

Wd

d

The miss rate improvement formula was applied to the reuse distance profile of the

Spec2000 benchmarks for a set-associative cache with a = 4 and dmax = 256. The reuse

distance profile was collected using the replacement-to-miss distance history with dmax =

256. The miss rate improvement estimate is compared to the OPT miss rate improvement

in Figure 4-4. Since the blocks with a certain reuse distance get replaced by blocks with a

different reuse distance, the uniform distance assumption does not hold in all instances for

40

 0

 20

 40

 60

 80

 100

w
up

w
is

e

vp
r

vo
rt

ex

tw
ol

f

sw
im

si
xt

ra
ck

pe
rlb

m
k

pa
rs

er

m
gr

id

m
es

a

m
cf

gz
ip

gc
c

ga
p

fa
ce

re
c

eq
ua

ke

eo
n

cr
af

ty

bz
ip

2

ar
t

ap
si

ap
pl

u

am
m

p

P
er

ce
nt

 Im
pr

ov
em

en
t

Benchmark

OPT Improvement over LRU and Estimated Improvement

OPT
Estimated

Figure 4-4: OPT Improvement and Estimated Improvement Based on Profile data and
Uniform Distance Model

a given a reuse distance profile. As a result, the estimate is sometimes higher or lower than

the OPT miss rate improvement. If the estimate is lower than the OPT, then it indicates

that OPT was able to find the blocks with higher distance to replace for the ones with lower

distance. If the estimate is higher than the OPT, then it indicates that the formula is more

optimistic than the actual OPT block replacements choices. The miss-rate estimate using

another formula is shown in the Appendix Figure ??. A more accurate model for miss-rate

improvement estimation can be developed using some more parameters derived from the

profile-based analysis and some more information about the block replacements.

Kill with LRU and Making Dead Block LRU

In the Kill+LRU replacement, a dead block is marked by setting its kill bit upon the last

access to that block. The kill bits are used along with the LRU ordering information to make

replacement decisions. In another approach dead blocks are handled without the use of kill

bits and only with the help of the LRU ordering information. In this approach, a block is

killed by making it the LRU block. This approach performs is equivalent to the MRK LRU

variation of the Kill+LRU replacement. Since there is no additional kill bit used with each

41

block, there is no way to distinguish between a dead block at the LRU position and a live

block at the LRU position. Moreover, it does not provide any information about the number

of dead blocks in the LRU ordering of the blocks which is useful in the Kill+Keep+LRU

replacement and Kill+Prefetch+LRU as described later.

Kill with LRU and Split Spatial/Temporal Cache

In the split spatial/temporal cache, the data is sent either to spatial cache or temporal

cache. The data is classified either as spatial data or as temporal data. The classification of

the data may be done at compile time or done dynamically at run-time. Since the spatial

and temporal caches are separate structures, the combined cache space in these structures

may not be used effectively if one type of data causes thrashes its cache structure while

the other cache structure is underutilized. Moreover, if the access pattern for one type

of data changes to the other type then the data needs to be moved to the other cache

structure. The Kill+LRU replacement provides a general mechanism to handle both classes

of data. The spatial type of data results in dead blocks and the dead blocks are marked by

setting their kill bits. The temporal data is not specifically marked but the temporal type

of data benefits by the Kill+LRU replacement because the dead blocks are chosen first for

replacement. An additional Keep state is added in the Kill+Keep+LRU replacement which

can be used to indicate the temporal type of data. This allows the temporal type of data

to be potentially kept longer in the cache.

4.3.2 Kill and Keep with LRU

In this replacement policy, each element in the cache has two additional states associated

with it. One is called a kill state represented by a Kl bit and the other is called a keep state

represented by a Kp bit. The Kl and Kp bits cannot both be 1 for any element in the cache

at any time. The Kl and Kp bits can be set under software or hardware control. On a hit

the elements in the cache are reordered along with their Kl and Kp bits the same way as in

an LRU policy. On a miss, if there is an element with the Kp bit set at the LRU position,

then instead of replacing this LRU element in the cache, the most recent element with the

Kl bit set is chosen to be replaced by the element at the LRU position (to give the element

with the Kp bit set the most number of accesses before it reaches the LRU position again)

and all the elements are moved to bring the new element at the most recently used position.

42

LRU

KILL(b)

Access(d)

Access(f)

Flexible Keep

a c eb

c b ea

e a cd

d e af

Kl=0,Kp=0 Kl=1,Kp=1Kp bits Kl bits

LRU policyd af

Fixed Keepd e cf

b

Figure 4-5:
√

Kill+Keep+LRU Replacement Policy

On a miss, if the Kp bit is 0 for the element at the LRU position, then the elements in the

cache are reordered along with their Kl and Kp bits in the same way as in an LRU policy.

There are two variations of this policy: (a) Flexible Keep: On a miss, if there is an element

at the LRU position with the Kp bit set and if there is no element with the Kl bit set, then

replace the LRU element (b) Fixed Keep: On a miss, if there is an element at the LRU

position with the Kp bit set and if there is no element with the Kl bit set, then replace the

least recent element with its Kp bit equal to 0.

Figure 4-5 shows how the Kl and Kp bits are used with the LRU policy. It shows a

fully-associative cache with four elements. Initially, the cache state is {a, c, b, e} with all the

Kl bits reset and Kp bits set for c and e. When b is killed (b is accessed and its Kl bit is

set) b becomes the MRU element and the new cache state is {b, a, c, e}. Then, d is accessed

and it results in a cache miss and an element needs to be chosen for replacement. In the

flexible keep variation of the Keep with Kill+LRU replacement policy, the most recently

killed element a is chosen for replacement because e is in the LRU position with its Kp bit

set. The new cache state is {d, e, a, c}. Now, the access to f results in a miss and c is the

43

LRU element chosen for replacement because there is no element with its Kl bit set. The

final cache state is {f, d, e, a}. If the fixed keep variation is used, the cache state before

the access to f is the same cache state for the flexible keep variation: {d, e, a, c}. Now,

upon an access to f , there is a cache miss and a is chosen for replacement because c has its

Kp bit set and a is the least recently used element with its Kp bit reset. The final cache

state is {f, d, e, c}. If the LRU replacement policy were used, the final cache state would be

{f, d, b, a}.

Flexible Keep and Kill with LRU

The flexible Kill+Keep+LRU allows the blocks marked as Keep blocks to be kept in the

cache as long as possible without reducing the hit rate compared to the LRU policy. But,

the Flexible Keep can result in less hits than the Kill+LRU replacement if the blocks that

are marked to be kept in the cache have the reuse distance longer than the blocks that are

not marked as Keep blocks. As a result, some of the blocks not marked as Keep blocks

would be replaced and lead to more misses than the hits resulting from the blocks marked

to be kept in the cache. Even though the Kill+Keep+LRU results in lower overall hit rate

for a set of data marked to be kept in the cache compared to the Kill+LRU, it improves

cache predictability of the data in the cache marked to be kept in the cache. Some of the

ways to identify the keep data are described in Section 6.1.

The other approach for keeping important data in on-chip memory is by assigning the

data to the SRAM, but this approach requires using different structures for the cache and

the SRAM. The data kept in the SRAM is available all the time, but the data in the

SRAM needs to be explicitly assigned to the SRAM and it may require some data layout

to accomodate different data that needs to be kept in the SRAM at the same time.

Intuitively, the Flexible Keep theorem says that keep the data marked as Keep data

whenever possible, i.e., if a Keep marked data would be replaced because it is at the LRU

position, then a dead block can save the Keep data from being replaced. This is done by

moving the Keep data at LRU position in a dead block’s place and bringing a new block as

in the LRU replacement policy. If there is no dead block available to save the Keep marked

data from being replaced, then the Keep marked block is replaced. Both of these cases

result in cache states that are superset of the cache state for the LRU replacement.

In the Fixed Keep variation of the Kill+Keep+LRU the data that is marked as Keep

44

data cannot be replaced by other blocks. If at any one instance in time, there is no dead

block available for a Keep data at the LRU position then the least recent non-Keep data is

replaced. This instance can result in more misses in the Fixed Keep variation compared to

the LRU policy. That is why the statement of the Fixed Keep Theorem in Section 4.4.2 has

the weakest condition necessary for the Fixed Keep variation of Kill+Keep+LRU to have

better hit rate than the LRU replacement.

4.3.3 Kill and Prefetch with LRU

The above mechanisms considered only the accesses issued by the processor that resulted

in a cache miss or a hit. A cache block can be brought into the cache by prefetching it

before it is requested by the processor. When prefetching is used in addition to the normal

accesses to the cache, there are different ways to handle the prefetched blocks. There are

four different scenarios shown in Figure 4-6.

(a): Figure 4-6(a) illustrates the standard LRU method without prefetching. New data

is brought into the cache on a miss, and the LRU replacement policy is used to evict

data in the cache. This method is denoted as (LRU, φ), where the first item in the

2-tuple indicates that new (normal) data brought in on a cache miss replaces old data

based on the LRU policy, and the φ indicates that there is no prefetched data.

(b): Figure 4-6(b) illustrates generic prefetching integrated with standard LRU replace-

ment. This method is denoted as (LRU, LRU) – normal data brought in on a cache

miss as well as prefetched data replace old data based on the LRU policy.

(c): Figure 4-6(c) integrates Kill + LRU replacement with a generic prefetching method.

Normal data brought in on a cache miss as well as prefetched data replaces old data

based on the Kill + LRU replacement strategy described in Section 4.3.1. This method

is denoted as (Kill + LRU, Kill + LRU).

(d): Figure 4-6(d) integrates Kill + LRU replacement with a generic prefetching method

in a different way. Normal data brought in on a cache miss replaces old data based

on the Kill + LRU policy, but prefetched data is only brought in if there is enough

dead data. That is, prefetched data does not replace data which does not have its

kill bit set. Further, when the prefetched data replaces dead data, the LRU order of

45

Normal
Data

Normal
Data

Prefetched
Data

Prefetched
Data

Normal
Data

Prefetched
Data

Normal
Data

Cache

Cache

(b)

(d)

Kill

LRU

LRU LRU

else Kill

Cache

Cache

(a)

(c)

Kill

LRU LRU

Kill

else

LRU

else

Figure 4-6:
√

Integrating Prefetching with Modified LRU Replacement

the prefetched data is not changed to MRU, rather it remains the same as that of the

dead data. This method is denoted as (Kill + LRU, Kill).

There is one other variant that is possible, the (LRU, Kill + LRU) variant. I do not

consider this variant since it does not have any interesting properties.

4.4 Theoretical Results

The theoretical results are presented for the replacement mechanisms that use the additional

states to keep or kill the cache lines. The conditions are shown under which the replacement

mechanisms with the kill and keep states are guaranteed to perform better than the LRU

policy. Also, the theorems for prefetching with LRU and Kill+LRU are presented here.

4.4.1 Kill+LRU Theorem

Definitions: For a fully-associative cache C with associativity m, the cache state is an

ordered set of elements. Let the elements in the cache have a position number in the range

[1, ...,m] that indicates the position of the element in the cache. Let pos(e), 1 ≤ pos(e) ≤ m

indicate the position of the element e in the ordered set. If pos(e) = 1, then e is the most

recently used element in the cache. If pos(e) = m, then the element e is the least recently

used element in the cache. Let C(LRU, t) indicate the cache state C at time t when using

the LRU replacement policy. Let C(KIL, t) indicate the cache state C at time t when using

the Kill + LRU policy. I assume the Kill + LRU policy variation (1) in the sequel. Let X

46

and Y be sets of elements and let X0 and Y0 indicate the subsets of X and Y respectively

with Kl bit reset. Let the relation X �0 Y indicate that the X0 ⊆ Y0 and the order of

common elements (X0∩Y0) in X0 and Y0 is the same. Let X1 and Y1 indicate the subsets of

X and Y respectively with Kl bit set. Let the relation X �1 Y indicate that the X1 ⊆ Y1

and the order of common elements (X1 ∩ Y1) in X1 and Y1 is the same. Let d indicate the

number of distinct elements between the access of an element e at time t1 and the next

access of the element e at time t2.

I first give a simple condition that determines whether an element in the cache can be

killed. This condition will serve as the basis for compiler analysis to determine variables

that can be killed.

Lemma 1 If the condition d ≥ m is satisfied, then the access of e at t2 would result in a

miss in the LRU policy.

Proof: On every access to a distinct element, the element e moves by one position

towards the LRU position m. So, after m−1 distinct element accesses, the element e reaches

the LRU position m. At this time, the next distinct element access replaces e. Since d ≥ m,

the element e is replaced before its next access, therefore the access of e at time t2 would

result in a miss.

Lemma 2 The set of elements with Kl bit set in C(KIL, t) �1 C(LRU, t) at any time t.

Proof: The proof is based on induction on the cache states C(KIL, t) and C(LRU, t).

The intuition is that after every access to the cache (hit or miss), the new cache states

C(KIL, t+ 1) and C(LRU, t + 1) maintain the relation �1 for the elements with the Kl bit

set.

At t = 0, C(KIL, 0) �1 C(LRU, 0).

Assume that at time t, C(KIL, t) �1 C(LRU, t).

At time t + 1, let the element that is accessed be e.

Case H: The element e results in a hit in C(KIL, t). If the Kl bit for e is set, then e is

also an element of C(LRU, t) from the assumption at time t. Now the Kl bit of e would be

reset unless it is set by this access. Thus, I have C(KIL, t + 1) �1 C(LRU, t + 1). If the

Kl bit of e is 0, then there is no change in the order of elements with the Kl bit set. So, I

have C(KIL, t + 1) �1 C(LRU, t + 1).

47

Case M: The element e results in a miss in C(KIL, t). Let y be the least recent element with

the Kl bit set in C(KIL, t). If e results in a miss in C(LRU, t), let C(KIL, t) = {M1, y,M2}
and C(LRU, t) = {L, x}. M2 has no element with Kl bit set. If the Kl bit of x is 0,

{M1, y} �1 {L} implies C(KIL, t+ 1) �1 C(LRU, t + 1). If the Kl bit of x is set and x = y

then {M1} �1 {L} and that implies C(KIL, t + 1) �1 C(LRU, t + 1). If the Kl bit of x is

set and x
= y, then x
∈ M1 because that violates the assumption at time t. Further, y ∈ L

from the assumption at time t and this implies C(KIL, t + 1) �1 C(LRU, t + 1).

I show the proof of the theorem below for variation (1); the proof for variation (2) is

similar.

Theorem 2 For a fully associative cache with associativity m if the Kl bit for any element

e is set upon an access at time t1 only if the number of distinct elements d between the

access at time t1 and the next access of the element e at time t2 is such that d ≥ m, then

the Kill + LRU policy variation (1) is as good as or better than LRU.

Proof: The proof is based on induction on the cache states C(LRU, t) and C(KIL, t).

The intuition is that after every access to the cache, the new cache states C(LRU, t+1) and

C(KIL, t + 1) maintain the �0 relation for the elements with the Kl bit reset. In addition,

the new cache states C(KIL, t + 1) and C(LRU, t + 1) maintain the relation �1 based on

Lemma 2. Therefore, every access hit in C(LRU, t) implies a hit in C(KIL, t) for any time

t.

I consider the Kill + LRU policy variation (1) for a fully-associative cache C with

associativity m. I show that C(LRU, t) �0 C(KIL, t) at any time t.

At t = 0, C(LRU, 0) �0 C(KIL, 0).

Assume that at time t, C(LRU, t) �0 C(KIL, t).

At time t + 1, let the element accessed is e.

Case 0: The element e results in a hit in C(LRU, t). From the assumption at time t, e

results in a hit in C(KIL, t) too. Let C(LRU, t) = {L1, e, L2} and C(KIL, t) = {M1, e,M2}.
From the assumption at time t, L1 �0 M1 and L2 �0 M2. From the definition of LRU and

Kill + LRU replacement, C(LRU, t + 1) = {e, L1, L2} and C(KIL, t + 1) = {e,M1,M2}.
Since {L1, L2} �0 {M1,M2}, C(LRU, t + 1) �0 C(KIL, t + 1).

Case 1: The element e results in a miss in C(LRU, t), but a hit in C(KIL, t). Let

C(LRU, t) = {L, x} and C(KIL, t) = {M1, e,M2}. From the assumption at time t,

48

{L, x} �0 {M1, e,M2} and it implies that {L} �0 {M1, e,M2}. Since e
∈ L, I have {L} �0

{M1,M2}. From the definition of LRU and Kill + LRU replacement, C(LRU, t+1) = {e, L}
and C(KIL, t + 1) = {e,M1,M2}. Since L �0 {M1,M2}, C(LRU, t + 1) �0 C(KIL, t + 1).

Case 2: The element e results in a miss in C(LRU, t) and a miss in C(KIL, t) and there is

no element with Kl bit set in C(KIL, t). Let C(LRU, t) = {L, x} and C(KIL, t) = {M,y}.
From the assumption at time t, there are two possibilities: (a) {L, x} �0 M , or (b) L �0 M

and x = y. From the definition of LRU and Kill + LRU replacement, C(LRU, t+1) = {e, L}
and C(KIL, t + 1) = {e,M}. Since L �0 M for both sub-cases (a) and (b), I have

C(LRU, t + 1) �0 C(KIL, t + 1).

Case 3: The element e results in a miss in C(LRU, t) and a miss in C(KIL, t) and there

is at least one element with the Kl bit set in C(KIL, t). There are two sub-cases (a) there

is an element with the Kl bit set in the LRU position, (b) there is no element with the

Kl bit set in the LRU position. For sub-case (a), the argument is the same as in Case 2.

For sub-case (b), let the LRU element with the Kl bit set be in position i, 1 ≤ i < m.

Let C(LRU, t) = {L, x} and C(KIL, t) = {M1, y,M2}, M2
= φ. From the assumption

at time t, {L, x} �0 {M1, y,M2}, which implies {L} �0 {M1, y,M2}. Since y has the Kl

bit set, y ∈ L using Lemma 2. Let {L} = {L1, y, L2}. So, {L1} �0 {M1} and {L2} �0

{M2}. Using Lemma 1, for the LRU policy y would be evicted from the cache before the

next access of y. The next access of y would result in a miss using the LRU policy. So,

{L1, y, L2} �0 {M1,M2} when considering the elements that do not have have the Kl bit set.

From the definition of LRU and Kill + LRU replacement, C(LRU, t + 1) = {e, L1, y, L2}
and C(KIL, t + 1) = {e,M1,M2}. Using the result at time t, I have C(LRU, t + 1) �0

C(KIL, t + 1).

4.4.2 Kill+Keep+LRU Theorem

Theorem 3 (a) The Flexible Keep variation of the Kill + Keep + LRU policy is as good

as or better than the LRU policy. (b) Whenever there is an element at the LRU position

with the Kp bit set if there is also a different element with the Kl bit set, then the Fixed

Keep variation of the Kill + Keep + LRU policy is as good as or better than LRU.

Proof: I just give a sketch of the proof here, since the cases are similar to the ones

in the Kill+LRU Theorem. I assume a fully-associative cache C with associativity m. Let

49

C(KKL, t) indicate the cache state C at time t when using the Kill+Keep+LRU policy.

A different case from the Kill+LRU theorem is where the current access of an element e

results in a miss in C(KKL, t) and the element x at the LRU position has its Kp bit set.

Consider the Flexible Keep variation of the Kill+Keep+LRU policy. If there is no

element with the Kl bit set, then the element x is replaced and the case is similar to the

Kill+LRU policy. If there is at least one element with the Kl bit set in C(KKL, t), let the

most recent element with its Kl bit set is y. Let the cache state C(KKL, t) = {L1, y, L2, x}.
The new state is C(KKL, t + 1) = {e, L1, x, L2}. There is no change in the order of the

elements in L1 and L2, so the relationship C(LRU, t + 1) �0 C(KKL, t + 1) holds for the

induction step. This implies the statement of Theorem 3(a).

Consider the Fixed Keep variation of the Kill+Keep+LRU policy. If there is at least

one element with the Kl bit set in C(KKL, t), let the most recent element with its Kl bit

set be y. Let the cache state C(KKL, t) = {L1, y, L2, x}. The new state is C(KKL, t +

1) = {e, L1, x, L2}. There is no change in the order of the elements in L1 and L2, so the

relationship C(LRU, t+1) �0 C(KKL, t+1) holds for the induction step. This implies the

statement of Theorem 3(b).

Set-Associative Caches

Theorem 2 and Theorem 3 can be generalized to set-associative caches.

Theorem 4 For a set-associative cache with associativity m if the Kl bit for any element

e mapping to a cache-set i is set upon an access at time t1 only if the number of distinct

elements d, mapping to the same cache-set i as e between the access at time t1 and the next

access of the element e at time t2, is such that d ≥ m, then the Kill+LRU policy variation

(1) is as good as or better than LRU.

Proof: Let the number of sets in a set-associative cache C be s. Every element maps

to a particular cache set. After an access to the element e that maps to cache set i, the

cache state for the cache sets 0 to i − 1 and i + 1 to s − 1 remains unchanged. The cache

set i is a fully-associative cache with associativity m. So, using Theorem 2, the Kill+LRU

policy variation (1) is as good as or better than LRU for the cache set i. This implies the

statement of Theorem 4.

50

Theorem 5 (a) The Flexible Keep variation of the Kill + Keep + LRU policy is as good

as or better than the LRU policy. (b) Whenever there is an element at the LRU position

with the Kp bit set in a cache-set i, if there is a different element with the Kl bit set in the

cache-set i, then the Fixed Keep variation of the Kill + Keep + LRU policy is as good as

or better than LRU.

Proof: I omit the proof of this theorem because it is similar to Theorem 4.

4.4.3 Kill+LRU with Prefetching Theorems

The combination of prefetching with LRU and Kill+LRU replacement as described in Sec-

tion 4.3.3 have some properties and the theoretical results based on these properties are

presented here. One property proven here is that (Kill + LRU, Kill + LRU) will perform

better than (LRU, LRU) if any prefetching strategy, which is not predicated on cache hits

or misses, is used, as long as it is the same in both cases. The other property is that (Kill +

LRU, Kill) will perform better than (LRU, φ) for any prefetching strategy. Note that (Kill

+ LRU, Kill + LRU) could actually perform worse than (LRU, φ) (Of course, if a good

prefetch algorithm is used, it will usually perform better). Similarly, (Kill + LRU, Kill +

LRU) could perform worse or better than (Kill + LRU, Kill).

Theorem 6 Given a set-associative cache, Strategy (Kill + LRU, Kill + LRU) where Kill

+ LRU corresponds to variation (1) is as good as or better than Strategy (LRU, LRU) for

any prefetch strategy not predicated on hits or misses in the cache.

Proof: (Sketch) Consider a processor with a cache C1 that runs Strategy (Kill +

LRU, Kill + LRU), and a processor with a cache C2 that runs Strategy (LRU, LRU).

I have two different access streams, the normal access stream, and the prefetched access

stream. Accesses in these two streams are interspersed to form a composite stream. The

normal access stream is the same regardless of the replacement policy used. The prefetched

access stream is also the same because even though the replacement strategy affects hits

and misses in the cache, by the condition in the theorem, the prefetch requests are not

affected. Therefore, in the (Kill + LRU, Kill + LRU) or the (LRU, LRU) case, accesses in

composite stream encounter (Kill + LRU) replacement or LRU replacement, respectively.

Since it does not matter whether the access is a normal access or a prefetch access, I can

invoke Theorem 4 directly.

51

I can show that (Kill + LRU, Kill) is always as good or better than (LRU, φ).

Theorem 7 Given a set-associative cache, the prefetch strategy (Kill + LRU, Kill) where

the Kill + LRU policy corresponds to variation (1) is as good or better than the prefetch

strategy (LRU, φ).

Proof: (Sketch) The prefetch strategy (Kill + LRU, Kill) results in two access streams,

the normal accesses and the prefetched blocks. The no-prefetch (LRU, φ) strategy has only

the normal access stream. Invoking Theorem 4, the number of misses in the normal access

stream is no more using Kill + LRU replacement than LRU replacement. The prefetch

stream in the (Kill + LRU, Kill) strategy only affects the state of the cache by replacing a

dead element with a prefetched element. When this replacement occurs, the LRU ordering

of the dead item is not changed. If the element has been correctly killed, then no subsequent

access after the kill will result in a hit on the dead element before the element is evicted

from the cache. A dead element may result in a hit using the Kill + LRU replacement due

to the presence of multiple dead blocks, but the same block would result in a miss using

the LRU replacement. Therefore, I can replace the dead element with a prefetched element

without loss of hits/performance. It is possible that prefetched item may get a hit before

it leaves the cache, in which case performance improves.

52

Chapter 5

MI-LRU Implementation

5.1 Implementation

As described earlier, the condition that determines the last access to a cache block is called

a kill predicate and when the kill predicate for a cache block is satisfied, the cache block can

be killed by marking it as a dead block. Two approaches to kill cache blocks are considered

here: hardware-based and software-assisted. The hardware-based approach performs all

the tasks related to building and using the kill predicates in hardware. The software-

assisted approach uses compiler analysis or profile-based analysis to introduce additional

instructions or annotations into the code that use the associated hardware to build and use

the kill predicates.

tagtag tag tagkbit kbit kbitkbit

Kill+LRU Replacement Logic

new info

new sig Kill

Cur Sig Table

sig info
sig info

Ref Sig Table

data addr

inst addr

Signature
Function

Store
Function

index

sig,
info

Logic
Kill Predicate

Data Cache

Figure 5-1:
√

Hardware-based Kill+LRU Replacement

53

5.1.1 Intuition behind Signatures

The hardware-based approach needs to build the kill predicates using some hardware sup-

port and use them to kill blocks by marking them as dead blocks. Since the hardware does

not have information about the future accesses, it uses some form of history information

along with other information to form kill predicates. The history information consists of

a sequence of accesses and this information is captured in the form of a signature. The

signatures can be formed using load/store instruction PCs and/or additional information

as described later. The history information in the form of signature is used to predict the

dead blocks, i.e., a signature indicates when a block is dead and can be marked as a dead

block. For example, consider a block b and the sequence Tx of PCs: {PC1, PC2, ..., PCn}
from the miss of block b (PC1) and the last PC (PCn) before the block b is replaced from

the cache. Suppose Tx is captured in the form of a signature Sx. Now, if the block b is

accessed in the future by a sequence Ty, the signature Sy corresponding the next sequence

Ty is compared to Sx and if there is a match, then b is marked as killed block. The success

of history based prediction relies on the repetition of access sequences of blocks that result

in dead blocks. There is another way the history information for a block bx can be used

to predict the dead block for block by. This relies on the same history information based

signatures for multiple blocks. So, even if the access sequence for a block does not repeat

the history information from one block can be applied to other blocks.

5.1.2 Hardware-based Kill+LRU Replacement

In this approach, all the tasks related to computing and using the kill predicates are per-

formed in hardware. The kill predicates are approximated in the form of signatures and

these signatures are matched against the current signatures associated with cache lines to

kill the cache lines. The following steps are involved in using the hardware kill predicates

based on signatures:

1. Compute Signatures: The signatures can be computed using different signature func-

tions involving different types of information.

2. Store Signatures: The signatures can be stored such that they are associated with

load/store instructions, data cache blocks, or data address ranges.

54

Algorithm: Hardware Kill Predicates using Signatures

On a Cache Hit:
Compute the new signature
Update the signature in the data cache block
Check the signature in the signature table
if found then
Mark the cache block killed

end if

On a Cache Miss:
Check the replaced block signature in the signature table
if not found then
Replace the last entry for the block in the table

end if
Initialize the signature for the new block
Check the new block’s signature entry in the signature table
if found then
Mark the cache line killed

end if

Figure 5-2:
√

Signature-based Hardware Kill Predicates

3. Lookup Signatures: The signatures are looked up in the signature table to determine

if a cache line block can be killed or not.

The hardware support for hardware kill predicates using signatures is shown in Fig-

ure 5-1 and the pseudo-code for the hardware kill predicates algorithm based on signatures

is shown in Figure 5-2. The algorithm for hardware kill predicates using signatures works

as follows. When a data cache block b is brought into the cache, the current signature s

associated with b is initialized. Upon every access to b, the signature s is updated using

the chosen signature function. The current signature s is compared to the signatures corre-

sponding to block b in the signature table T . If there is a match, then the block b is marked

killed. When the block b is replaced, the signature entry corresponding to b in the signature

table T is updated with the signature s, if the value does s not exist in T .

5.1.2.1 Signature Functions

Signature functions use a variety of information to build the signatures. A kill predicate

may consist of other information in addition to a signature. The signature functions are:

55

• XOR LDST: The PCs of the load/store instructions accessing a data cache block

are XORed together.

• XOR LDST ROT: The PC of a load/store instruction is rotated left by the number

of accesses to the accessed cache block and it is XORed with the current signature.

• BR HIST: A path indicated by last n taken/not taken committed branches is used as

a signature. Though a signature based on load/store instructions implicitly includes

the path information, a signature based on the branch history incorporates explicit

path information.

• TRUNC ADD LDST: The PCs of the load/store instructions are added to form a

signature. The result of the addition is truncated based on the number of bits chosen

for the signature.

• Signatures based on load/store Classification: In this approach, different sig-

natures parameters or functions are used for the load/stores based on the load/store

classification. The instructions are classified into the different types either statically

or dynamically. The classification helps because the signatures reflect the types of

accesses associated with the instructions.

A kill predicate may consist of a signature, or some information, or a combination of a

signature and some information. Some examples of kill predicates are: Signature, Number

of Accesses, Number of Accesses and XOR LDST, Number of Accesses and XOR LDST and

Cache Set, Number of Accesses and XOR LDST ROT, Number of Accesses and XOR LDST ROT

and Cache Set.

5.1.2.2 Storing Signatures

There are different ways to store the signatures computed for the data cache blocks in the

signature table.

• Signatures associated with instructions: In this approach, the signatures are

stored in a signature table using partial load/store PCs as store/lookup indices. The

partial load/store PC or a pointer to the load/store miss table that keeps the partial

load/store PCs is kept as part of the data cache block and initialized when the data

cache block is brought into the cache.

56

The number of load/stores that miss in the data cache bring in a new data cache

block into the data cache and these load/stores are a small percentage of load/store

instructions. This approach works well when the load/store instructions that miss

have a small number of distinct signatures for the different data cache blocks they

access. So, it requires a small number of signatures for every partial load/store PC.

The disadvantage of this approach is that the number of signatures associated with

the load/store instructions may vary across the application.

• Signatures associated with data blocks: When there are many signatures for the

load/store instructions that miss, it is better to store the signatures in the table using

data block addresses as indices.

• Signatures associated with data address ranges: To take advantage of the

similarity of the access patterns for some data address ranges, the signatures can be

stored and looked up based on the data address ranges.

• Signatures stored using Hash Functions: Some hash functions can be used to

store and access the signatures in the signature table. The hash functions distribute

the signatures in the signature table to reduce the conflicts.

Using Reuse Distance

The replacement-to-miss distance information can be combined with other information

such as a kill bit to make replacement decisions. The replacement-to-miss distance can

be measured in hardware. The reuse distance captures some of the difference between the

most-recently-killed Kill+LRU policy and the optimal replacement by allowing a choice in

selecting a killed block for replacement. With the use of reuse distance, the problem of

stale killed blocks can be avoided because the killed blocks with the reuse distance greater

than the most recently killed block would be selected for replacement before a most recently

killed block. Figure 5-3 shows how the reuse distance (replacement-to-miss distance) can

be measured in hardware. It uses an Instruction Annotation Table (IAT) and a Reuse Ta-

ble (RT) to measure the replacement-to-miss distance for the instructions. An instruction

annotation table (IAT) entry keeps a pointer to the replacement table (RT). The RT table

stores the information about the reuse distance measurements under progress. A status bit

57

SMCIATPV

DADDR

RDSTRTP

DTAG

Data Cache

ITAG

Instr Annotation Table (IAT)

IADDR
Reuse Table (RT)

DADDR

S

DTAG IATP RDST

Figure 5-3:
√

Hardware for Reuse Distance Measurement

kill

update

Kill

Predicate
Logic Kill+LRU Replacement Logic

kill bit
update

tagkbittagkbittagkbit

Annotated
Program

Inst addr

hint/control

data addr
tagkbit

Data Cache

Figure 5-4:
√

Software-assisted Kill+LRU Replacement Hardware

meas reuse with values pending and idle is used to indicate if the reuse distance measure-

ment is in progress. Reuse distance is measured for one set at a time for a given load/store

instruction. There is a set miss count (SMC) which keeps the number of misses per set.

The number of bits used for the count limit the the maximum reuse distance that can be

measured.

5.1.3 Software-assisted Kill+LRU Replacement

In this approach, a compiler analysis or profile-based analysis is done to determine the kill

predicates and these kill predicates are incorporated into the generated code using some

additional instructions. These additional instructions communicate the kill predicates to

58

the associated hardware. The hardware may setup some registers and set the kill bits of the

data cache blocks according to the specified kill predicates. The interaction of the hardware

and the additional information introduced by the compiler is shown in Figure 5-4.

5.1.3.1 Kill Predicate Instructions

The kill predicate instructions have different software and hardware costs associated with

them. Different kill predicate instructions are suited for different types of kill predicates.

The choice of a kill predicate instruction to use at a particular point in the program is

up to the compiler algorithm. The compiler algorithm uses the appropriate kill predicate

instruction to handle the desired kill predicate.

The kill predicate instructions can be introduced anywhere in the code, but to reduce

the overhead of these instructions, it is better to put them either before a loop or after

a loop. The kill predicate instructions where the kill predicate is part of the load/store

instruction don’t introduce any execution time overhead. In order to reduce the execution

time overhead, an annotation cache can be used as described later. The following kill

predicate instructions are used by the compiler algorithm:

• LDST KILL: a new load/store instruction that sets the kill bit on every access gen-

erated by the instruction. The kill predicate (set kill bit) is part of the instruction

encoding.

• LDST HINT KPRED: there is a hint or condition attached with the load/store in-

struction. The hint may require additional instruction word to specify this instruction.

For example, the kill predicate can be count n which indicates that on every nth access

generated by the instruction, set the kill bit of the accessed cache block.

• LDST CLS: this instruction conveys the instruction classification information that

can help in determining the kill predicates. The class information indicates the type

of accesses issued by the load/store instruction (e.g., stream accesses).

• PRGM LDST KPRED: programmable kill predicate load/store instruction specifies

the kill predicate and the load/store PC to attach the kill predicate. This instruction

can be used before a loop to setup a hardware table that is accessed using the PC.

Upon an access, the load/store PC is used to lookup and update the hardware table.

59

Cache

Block Block BlockBlock
Set

Start Addr End Addr

Start Addr End Addr

In
Range?

Address Missed

Address

KillIn
Range?

Kill Range Table

Block Address
Sequencer

Figure 5-5:
√

Kill Range Implementation Hardware

This instruction is different from the above instructions because the kill predicate

information is maintained in a separate table.

• LDST AUTO BLK KPRED: this instruction sets the auto-kill bit in the cache blocks

accessed by the kill predicate instruction. The kill predicate indicates the type of

information that would be maintained with each data cache block and when the block

is accessed, if the kill predicate is satisfied the block is marked killed.

• STC DRNG KPRED: static kill address range instruction specifies the address range

and a kill predicate that is used to set kill bits for the data cache blocks that fall

within the range and satisfy the kill predicate. This instruction can be put either

before a loop or after a loop.

• DYN DRNG KPRED: dynamic kill address range information where the address

range and a kill predicate are used to compare and set the kill bits. The range

changes based on the condition specified as part of the instruction. This instruction

is used similar to the above instruction.

Keep Range and Cache Line Locking

The use of keep range instruction is better than cache line locking because in cache line

locking the data space is reserved in the cache and less space is available to the other

data. The cache space need to be released later to be used by other data. The keep range

instruction allows for different data ranges to be specified in different phases based on the

changing requirements of the different phases of an application.

60

Kill Range Implementation

The kill range hardware implementation is shown in Figure 5-5. A hardware table stores the

information about the ranges of addresses and it matches those addresses to the addresses

generated and declares the blocks killed based on the condition in the hardware table. The

hardware table consists of the Start Address and End Address entries. The entries of the

table can be updated in the FIFO manner or using some other policy as desired. When an

address is provided for comparison, it is compared with the address ranges in parallel and

the associated kill predicates. Upon an access to a set in the cache, if the address results in

a miss, then the addresses corresponding to the tags in the set are provided to the hardware

range table for comparison sequentially and if any address falls within a range and satisfies

the kill predicate, then the tag corresponding to that address is marked as the killed tag

and this information is used during the replacement.

5.1.3.2 Profile-based Algorithm

The compiler algorithm looks at the data accesses in terms of the cache blocks. There may

be multiple scalar variables assigned to the same block, but this information is generally not

available at compile time. But, in some cases, it can be obtained using alignment analysis

in the compiler. The compile algorithm focuses on statically or dynamically allocated array

variables and they are called kill candidate variables. Some group of scalar variables that

are allocated in contiguous memory locations (e.g., local variables of a procedure) are also

considered as kill candidate variables. In order to compute the reuse distance for a cache

block, the number of distinct blocks mapping to the same set as the cache block is required.

This requires information about the data layout. But, the compiler does not have the

information about the data layout. This makes the computation of reuse distances infeasible.

An alternative is to compute the total number of distinct blocks (footprint) between the two

accesses of the same block and if the footprint is above some threshold, then the first access

of the cache block can be assigned a kill predicate instruction/annotation. The footprint

computation requires the information about data sizes, values of input parameters that

determine the control flow and the number of iterations, etc. The compiler can compute

the footprint functions in terms of constants and input parameters and use a kill predicate

instruction based on conditional expression at run-time. The steps for a compiler algorithm

61

to identify and assign kill predicates are:

1. Perform the pointer analysis to identify the references that refer to the same variables.

This analysis identifies memory references that would refer to the same cache blocks.

2. Perform life-time analysis on variables in the program, and identify the last use of

all variables in the program. Associate an appropriate kill predicate instruction (e.g.,

STC DRNG KPRED) for these references.

3. If sufficient information is available to compute a reuse distance d between two tem-

porally adjacent pair of references to the kill candidate variables, then determine the

lower bound on the the reuse distance d each such pair.

For a given pair of references to a kill candidate variable, the number of accesses to

distinct blocks mapping to the same set is determined for each control path and a

minimum value along these paths is chosen as the value d.

For kill candidate variables, if any adjacent pair of references has d ≥ m, where m

is the associativity of the cache, associate a kill predicate instruction with the first

reference.

4. Otherwise, compute the minimum footprint between each temporally-adjacent pair of

references to the kill candidate variables. If the minimum footprint is greater than

the data cache size, then the first reference is assigned a kill predicate instruction.

5. If footprint function cannot be determined fully then a conditional expression is used

to conditionally execute the kill predicate instruction at run-time. For example, a foot-

print function f(N), where N is the number of iterations, and if f(N) > CacheSize

for N ≥ 100, then a kill predicate instruction is executed conditionally based on the

value of the conditional expression N ≥ 100 at run-time.

But a profile-based algorithm for the software-assisted approach uses some input data

independent program information that can also be derived using the compiler analysis. The

profile-based algorithm can approximate some aspects of the compiler algorithm using some

hardware structures.

Since the compiler algorithm is not implemented, a profile-based algorithm is used to

implement the software-assisted Kill+LRU replacement. The profile-based algorithm can

62

collect input data independent information (e.g., type of load/store instruction, loop begin

and end markers) or collect data dependent information (e.g., number of blocks between two

accesses). In the following profile-based algorithm, the static information about the program

is derived using a profile run and used as annotations for evaluation using simulation. The

kill predicates are determined in hardware but with software assistance in the form of some

annotations. The steps for the profile-based algorithm are:

• Run the target program on an input data set and collect input data independent

information: type of load/store instruction, loop boundary markers, etc.

• Generate an annotation table for the program information to be incorporated into

the simulator. The annotation table is a PC-based annotation table. Additional

instructions are incorporated and used in simulation using PC-based entries in the

annotation table.

• Simulate the program run on the same input data set or a different data set. Simula-

tion uses the annotations to generate Kill predicates and update the annotation table

dynamically.

63

Chapter 6

♣ Combining MI-LRU with Keep

and Prefetching

6.1 Keep with Kill+LRU Replacement

In order to use Keep with Kill+LRU replacement, the information about the Keep data

blocks needs to be determined and conveyed to the hardware logic. The Keep information

can be determined using compiler analysis or profiled-based analysis. The information can

be conveyed to the hardware in the form of hints or additional instructions.

The compiler analysis that determines Keep data blocks can use three types of informa-

tion: data types, data block usage patterns, and reuse distance information to determine

the Keep variables. The data types and data block usage patterns may imply that it is

beneficial to keep certain data blocks temporarily in the cache. A reuse distance threshold

can also be used to help in determining the Keep variables. The information about the keep

variables is conveyed to the hardware either as hints that are part of load/store instructions

or Keep range instructions which specify the data address ranges for the Keep variables.

The Keep with Kill+LRU replacement has not been implemented, but the algorithm to

determine the Keep data blocks can be implemented in a compiler along with the algorithm

for the Kill+LRU replacement. The results presented later are based on the Keep variables

being determined statically and conveyed to hardware using the annotations for the Keep

data blocks.

64

1: Determine the KEEP candidate variables
2: Choose the KEEP length of variables
3: Assign KEEP hints or KEEP instructions

Figure 6-1: � Profile-based KEEP Algorithm

tagtag tag tagkbit kbit kbitkbit

Kill+LRU Replacement Logic

data addr

Prefetch
Pref?

Req
Pref Pref

Data

Miss
Req

Miss
Data

Logic

inst addr

Figure 6-2:
√

Prefetching with Kill+LRU Replacement

6.1.1 Profile-based Keep Algorithm

6.1.2 Keep Candidates Selection

6.1.3 Keep Decay Options

6.1.4 Keep Instructions

6.2 Prefetching with Kill+LRU Replacement

Any prefetching scheme can be combined with the Kill+LRU replacement policy. The

two ways to combine prefetching with the Kill+LRU replacement are considered here. One

approach keeps the prefetching scheme independent of the Kill+LRU replacement by issuing

the prefetches independent of the availability of killed blocks in the target cache set. But,

the prefetched block replaces a killed block if available, otherwise it replaces the LRU

block. The other approach controls prefetching by issuing prefetches only when there is

killed data available and replacing only a killed block when the prefetched block is brought

into the cache. If there is no killed block available when the prefetched block arrives, it

is discarded. There are certain performance guarantees in terms of misses can be made

65

for the two Kill+LRU and prefetching combinations. A hardware view of prefetching with

Kill+LRU replacement is shown in Figure 6-2. Two prefetching approaches are considered

in combination with the Kill+LRU replacement policy as described in the following sections.

6.2.1 Hardware Prefetching

A tagged hardware prefetching scheme is used here. In the n-block lookahead tagged hard-

ware prefetching scheme, upon a cache miss to a cache block b, n cache blocks following the

block b are prefetched into the cache if they are not already in the cache. When the LRU

replacement is used, the prefetched block replace the LRU cache block and the prefetched

cache block becomes the MRU cache block. The last prefetched block is tagged, if it is not

already in the cache. If there is a hit on a tagged block, the tag is removed from the block

and the next block address is prefetched.

I now give some details pertaining to the hardware implementation of the prefetching

method. Generating the new addresses for the blocks is trivial. Before a prefetch request is

made for a block, the cache is interrogated to see if the block is already present in the cache.

This involves determining the set indexed by the address of the block to be prefetched. If

this set contains the block the prefetch request is not made.

6.2.2 Predictor-based Prefetching

The stride prefetching scheme considered here uses a hardware structure called Reference

Prediction Table (RPT) to predict the strides in the data memory addresses accessed by the

load/store instructions. When a load/store misses in the cache, and if the stride prediction

is available, in addition to the missed block the next block based on the stride is prefetched

into the cache.

The RPT maintains the access stride information about active load/store instructions.

The RPT can be a direct-mapped table or a set-associative table indexed by load/store

PC address information. Each RPT entry maintains the last address accessed by the PC

corresponding to the RPT entry, stable stride flag, and stride value. Upon a data access,

RPT is checked and if the load/store PC entry does not exist, then it is created with the last

access address. When the same PC initiates another access, the last address is subtracted

from the current address to determine the stride and it is stored in the RPT entry for the

PC. When the same stride is computed the second time, it is considered stable and can be

66

used in predicting the address for prefetching.

6.2.3 Prefetch Correlation with Kill+LRU Replacement

The use of hardware-based prefetching or predictor-based prefetching with Kill+LRU re-

placement decouples the prefetching approach with the Kill+LRU replacement. The prefetch-

ing of cache blocks can be correlated with the Kill+LRU replacement and can be imple-

mented in the form of a Kill+Prefetch engine. This engine integrates the functions for

the Kill+LRU and prefetching by correlating prefetches with the killed blocks or kill predi-

cates. For example, when using the software-assisted approach, the kill predicate instruction

PRGM LDST KPRED is used in combination with the prediction-based prefetching using

the RPT. The RPT determines the prfetch address and the same table structure can be

used to predict the dead blocks when the dead block information is associated with the

load/store instructions. So, when a dead block condition is satisfied in an RPT entry for

a load/store instruction, the same entry contains the information about the next prefetch

address.

67

Chapter 7

♣ New Instructions

7.1 Type of Cache Control Commands

There can be several types of cache control commands with some associated bits in the cache

and may be some hardware to implement these commands. The cache control commands

are described below.

• Kill commands: these commands allow the arrays or data structures to be marked for

replacement. These commands allow the augmentation of the LRU state to kill the

data that is not going to be used for some time and the cache can be updated quickly.

It is like modifying the LRU state of the cache and accelerating the adaptation of the

LRU for the cache.

• Partial kill commands: these commands allow parts of the arrays or variables to be

marked for replacement

• Keep command: this command allows a certain variable to be kept in the cache unless

released.

• Keep for limited time: this command allows a certain variable to be kept for a limited

time. A counter in the set can be decremented to account for the accesses in the set.

• Prefetch range commands: prefetch a range of addresses

The summary of new instructions is given in Table 7.1.

68

Instruction Description
ldkl Kill on every load
stkl Kill on every store

Table 7.1: New Instructions

Figure 7-1: � Hardware Condition-based Trigger Implementation

7.2 Instruction Descriptions

7.3 Hint-based Instructions

7.4 Condition-based Instructions

7.5 Range-based Instructions

The trigger PC address can be specified as a pc-relative offset from the setup instruction

PC.

The advantage of specifying ranges using explicit address ranges is that the load/store

instructions accessing the ranges don’t need to contain the range related information. The

data symbol table would be useful in determining the static data ranges, but this information

is not available in the compiled benchmarks. So, the static address range information can be

derived using the profile-based runs of the benchmarks. The address ranges can be derived

from the page table scan of the accessed pages and collecting the minimum page number

69

Figure 7-2: � Range Block Count-based Implementation

and maximum page number for the range list.

The arrays or variables that need to be marked for replacement can be indicated us-

ing a cache control instruction that gives the address range that needs to be marked for

replacement. This information can be kept in a hardware associative table and whenever

the cache is accessed the address is compared with the range of addresses currently under

KILL state. If a matching range is found, then a bit is set in the cache line associated with

the address indicating that the cache line is marked for replacement. This is like a lazy kill

operation because the kill bit of the cache lines for a given address range are updated as

the cache lines are accessed.

7.6 Run-time Support

7.6.1 Modified Code

7.6.2 Annotation Cache

In the software-assisted mechanisms, some information is communicated from the software

through annotations of the existing instructions or by additional instructions. These ad-

ditional communication mechanisms may cause execution time overhead. An annotation

cache can load the annotations corresponding to the instructions separately and reduce

the execution time overhead because these annotations are separated from the instruction

70

stream.

I will look into the use of annotation cache for software-assisted mechanisms.

7.7 ALPHA Implementation Options

7.7.1 Unused Fields

7.7.2 Unused Opcodes

I experimented with introducing unused opcodes to indicate additional instructions.

7.7.3 PAL codes

71

Chapter 8

Disjoint Sequences and Cache

Partitioning

8.1 Introduction

Given two memory address sequences, they are disjoint if there is no common address

between the two address sequences. Any address sequence can be considered as a merged

address sequence of one or more disjoint address sequences. So, when an address sequence

is applied to a cache, the whole cache space is shared by the elements of the applied address

sequence.

In this chapter, I provide a theoretical basis for improving the cache performance of

programs by applying the notion of disjoint sequences to cache partitioning. I prove the-

orems that show that if a program’s memory reference stream can be reordered such that

the reordered memory reference stream satisfies a disjointness property, then the reordered

memory reference stream is guaranteed to have fewer misses for the cache so long as the

cache uses the LRU replacement policy. To elaborate, if a memory reference stream R12 can

be reordered into a concatenation of two memory reference streams R1 and R2 such that

R1 and R2 are disjoint streams, i.e., no memory address in R1 is in R2 and vice versa, then

the number of misses produced by R12 for any cache with LRU replacement is guaranteed

to be greater than or equal to the number of misses produced by the stream R1@R2, where

@ denotes concatenation. Thus, reordering to produce disjoint memory reference streams

is guaranteed to improve performance, as measured by cache hit rate.

72

8.2 Theoretical Results

The theoretical results presented here form the basis of the cache partitioning approach

explored in this thesis.

8.2.1 Definitions

Let R1 and R2 be two disjoint reference sequences merged without re-ordering to form

a sequence S. That is, S is formed by interspersing elements of R2 within R1 (or vice

versa) such that the order of elements of R1 and R2 within S is unchanged. For example,

consider the sequence R1 = a, b, a, c and R2 = d, d, e, f . These sequences are disjoint, i.e.,

they do not share any memory reference. The sequence S can be a, d, d, b, e, a, c, f but not

a, d, d, a, b, c, e, f because the latter has reordered the elements of R1.

Let R
′
1 be the R1 sequence padded with the null element φ in the position where R2

elements occur in S such that ‖ S ‖=‖ R
′
1 ‖= N . If S = a, d, d, b, e, a, c, f then R

′
1 =

a, φ, φ, b, φ, a, c, φ. So, based on the above description, if S(x) ∈ R1 then S(x) = R
′
1(x). I

define the null element φ to always result in a hit in the cache.

Let C(S, t) be the cache state at time t for the sequence S. Let C(R
′
1, t) be the cache

state at time t for the sequence R
′
1. There are no duplicate elements in a cache state. Let

the relation X � Y indicate that X ⊆ Y and the order of the elements of X in Y is same as

the order in X. For example, if X = {a, b, e} and Y = {f, a, g, b, h, e} then X � Y because

X ⊆ Y and the order of a, b, and e in Y is the same as the order in X.

For a direct-mapped cache C is an array; for a fully associative cache with an LRU

policy C is an ordered set; and for a set-associative cache with the LRU policy C is an

array of ordered sets.

8.2.2 Disjoint Sequence Merge Theorem

Theorem 1: Given a cache C with an organization (direct mapped, fully-associative or set-

associative) and the LRU replacement policy, and two disjoint reference sequences R1 and

R2 merged without re-ordering to form a sequence S. The number of misses m1 resulting

from applying the sequence R1 to C ≤ the number of misses M resulting from applying the

sequence S to C.

Sketch of the proof: Let m
′
1 be the number of misses of R1 in S. Let m

′
2 be the number of

73

misses of R2 in S. So, M = m
′
1+m

′
2 is the total number of misses in S. For a direct-mapped

cache I show by induction that for any time t, 0 ≤ t ≤ N , C(S, t)∩R1 ⊆ C(R
′
1, t). For a fully-

associative cache I show by induction that for any time t, 0 ≤ t ≤ N , C(S, t)∩R1 � C(R
′
1, t).

For a set-associative cache I show by induction that for any time t, 0 ≤ t ≤ N , 0 ≤ i ≤ p−1,

C(S, t)[i] ∩ R1 � C(R
′
1, t)[i], where p is the number of ordered sets in the set-associative

cache. This implies that if an element of R1 results in a miss for the sequence R
′
1 it would

result in a miss in the sequence S. So, I have m1 ≤ m
′
1 and by symmetry m2 ≤ m

′
2. So,

m1 + m2 ≤ m
′
1 + m

′
2 or m1 + m2 ≤ M . Thus I have m1 ≤ M and m2 ≤ M .

Direct Mapped Cache

I show that for any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 ⊆ C(R
′
1, t). Every element e maps to

an index Ind(e) that can be used to lookup the element in the cache state C.

For t = 0, C(S, 0) ∩ R1 ⊆ C(R
′
1, 0).

Assume for time t, C(S, t) ∩ R1 ⊆ C(R
′
1, t).

For time t+1, let f = S(t+1) and let i = Ind(f) and let e = C(S, t)[i] and let x = C(R
′
1, t)[i].

Case 0 (hit): The element f results in a hit in C(S, t). So, e ≡ f and C(S, t+1) = C(S, t).

If f ∈ R1, R
′
1(t + 1) ≡ f and from the assumption at time t, C(R

′
1, t)[i] ≡ f . Since the

element f results in a hit in C(R
′
1, t), C(R

′
1, t + 1) = C(R

′
1, t). So, C(S, t + 1) ∩ R1 ⊆

C(R
′
1, t+1). If f ∈ R2, then R

′
1(t+1) ≡ φ and C(R

′
1, t+1) = C(R

′
1, t). So, C(S, t+1)∩R1 ⊆

C(R
′
1, t + 1).

Case 1 (miss): The element f results in a miss in C(S, t) and f ∈ R2 and e ∈ R1. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. This implies that

C(S, t + 1) ∩R1 ⊆ C(S, t) ∩R1. The element R
′
1(t + 1) ≡ φ so C(R

′
1, t + 1) = C(R

′
1, t). So,

C(S, t + 1) ∩ R1 ⊆ C(R
′
1, t + 1).

Case 2 (miss): The element f results in a miss in C(S, t) and f ∈ R2 and e ∈ R2. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. This implies that

C(S, t + 1) ∩R1 ≡ C(S, t) ∩R1. The element R
′
1(t + 1) ≡ φ so C(R

′
1, t + 1) = C(R

′
1, t). So,

C(S, t + 1) ∩ R1 ⊆ C(R
′
1, t + 1).

Case 3 (miss): The element f results in a miss in C(S, t) and f ∈ R1 and e ∈ R1. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. The element

74

R
′
1(t + 1) ≡ f from the construction of S and R

′
1. The new cache state for the sequence

R
′
1 is C(R

′
1, t + 1) = C(R

′
1, t) − {x} ∪ {f}. From the assumption at time t x ≡ e. So,

C(S, t + 1) ∩ R1 ⊆ C(R
′
1, t + 1).

Case 4 (miss): The element f results in a miss in C(S, t) and f ∈ R1 and e ∈ R2. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. The element

R
′
1(t + 1) ≡ f from the construction of S and R

′
1. The new cache state for the sequence

R
′
1 is C(R

′
1, t + 1) = C(R

′
1, t) − {x} ∪ {f}. Since e ∈ R2 and the assumption at time t,

(C(S, t) − {e}) ∩ R1 ⊆ (C(R
′
1, t) − {x}). So, C(S, t + 1) ∩ R1 ⊆ C(R

′
1, t + 1).

Fully-associative Cache

Lemma 1: Let C(S, t) = {L, y}, where L is an ordered subset of elements and y is the

LRU element of C(S, t). Let C(R
′
1, t) = {M,z}, where M is an ordered subset of elements

and z is the LRU element of C(R
′
1, t). If y ∈ R2, then z
∈ L.

Proof: Based on the construction of R
′
1 and S, if M is not null, the last reference of z in

both the sequences should occur at the same time t1 < t and between t1 and t the number

of distinct elements in R
′
1 ≤ the number of distinct elements in S. If M is null, then there

is only one element in C at time t because we have referenced z over and over, so t can be

anything but t1 = t and the number of distinct elements following z in R
′
1 = 0 as in S. Let

‖ C ‖= c. For C(R
′
1, t) = {M,z}, let the number of distinct elements following z be n. Since

z is the LRU element in C(R
′
1, t), n = c− 1. Let us assume that z ∈ L. Let L = {L1, z, L2}

and ‖ L1 ‖= l1, ‖ L2 ‖= l2, ‖ L ‖= c − 1. For C(S, t) = {L, y} = {L1, z, L2, y}, let the

number of distinct elements following z be m and m = l1. So, m < c − 1. So, m < n and

that contradicts the assertion on the number of distinct elements. Therefore, z
∈ L.

I show that for any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 � C(R
′
1, t).

For t = 0, C(S, 0) ∩ R1 � C(R
′
1, 0).

Assume for time t, C(S, t) ∩ R1 � C(R
′
1, t).

For time t + 1, let x = S(t + 1).

Case 0 (hit): x ∈ R1 and x results in a hit in C(S, t). Let C(S, t) = {L1, x, L2}, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S, t + 1) =

{x,L1, L2}. Let C(R
′
1, t) = {M1, x,M2}, where M1 and M2 are subsets of ordered elements.

75

C(R
′
1, t+1) = {x,M1,M2}. From the assumption at time t, {L1, x, L2}∩R1 � {M1, x,M2}.

So, {L1} ∩ R1 � {M1} and {L2} ∩ R1 � {M2}. Thus {L1, L2} ∩ R1 � {M1,M2}. So,

C(S, t + 1) ∩ R1 � C(R
′
1, t + 1).

Case 1 (hit): x ∈ R2 and x results in a hit in C(S, t). Let C(S, t) = {L1, x, L2}, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S, t + 1) =

{x,L1, L2}. From the construction of R
′
1, R

′
1(t + 1) ≡ φ and C(R

′
1, t + 1) = C(R

′
1, t). Since

x ∈ R2, C(S, t + 1) ∩ R1 ≡ C(S, t) ∩ R1. So, C(S, t + 1) ∩ R1 � C(R
′
1, t + 1).

Case 2 (miss): x ∈ R2 and x results in a miss in C(S, t) and the LRU element y ∈ R2.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element

of C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. Since x ∈ R2 and

y ∈ R2, C(S, t + 1) ∩ R1 ≡ C(S, t) ∩ R1. From the construction of R
′
1, R

′
1(t + 1) ≡ φ and

C(R
′
1, t + 1) = C(R

′
1, t). So, C(S, t + 1) ∩ R1 � C(R

′
1, t + 1).

Case 3 (miss): x ∈ R2 and x results in a miss in C(S, t) and the LRU element y ∈ R1.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element

of C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. Since x ∈ R2 and

y ∈ R1, C(S, t + 1) ∩ R1 � C(S, t) ∩ R1. From the construction of R
′
1, R

′
1(t + 1) ≡ φ and

C(R
′
1, t + 1) = C(R

′
1, t). So, C(S, t + 1) ∩ R1 � C(R

′
1, t + 1).

Case 4 (miss): x ∈ R1 and x results in a miss in C(S, t) and the LRU element y ∈ R2.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element of

C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. From the construction

of R
′
1, R

′
1(t + 1) ≡ x. Let C(R

′
1, t) = {M,z}, where M is a subset of ordered elements.

The new state for the sequence R
′
1 is C(R

′
1, t + 1) = {x,M}. From Lemma 1, z
∈ L. So,

{x,L} ∩ R1 � {x,M}. So, C(S, t + 1) ∩ R1 � C(R
′
1, t + 1).

Case 5 (miss): x ∈ R1 and x results in a miss in C(S, t) and the LRU element y ∈ R1.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element of

C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. From the construction

of R
′
1, R

′
1(t + 1) ≡ x. Since y ∈ R1, the LRU element of C(R

′
1, t) is also y due to the

assumption at time t. Let C(R
′
1, t) = {M,y}, where M is a subset of ordered elements.

The new state for the sequence R
′
1 is C(R

′
1, t + 1) = {x,M}. From the assumption at time

t, {L} ∩ R1 � {M}. Thus, {x,L} ∩ R1 � {x,M}. So, C(S, t + 1) ∩ R1 � C(R
′
1, t + 1).

76

Set-associative Cache

Assume that there are p ordered sets in C that can be referred as C[0], ..., C[p − 1]. Every

element e maps to an index Ind(e) such that 0 ≤ Ind(e) ≤ p− 1 that is used to lookup the

element in the ordered set C[Ind(e)]. I show for 0 ≤ t ≤ N , 0 ≤ i ≤ p− 1, C(S, t)[i]∩R1 �
C(R

′
1, t)[i].

For t = 0, 0 ≤ i ≤ p − 1, C(S, 0)[i] ∩ R1 � C(R
′
1, 0)[i].

Assume for time t, 0 ≤ i ≤ p − 1, C(S, t)[i] ∩ R1 � C(R
′
1, t)[i].

For time t + 1, let x = S(t + 1), and j = Ind(x).

For i
= j (0 ≤ i ≤ j − 1 and j + 1 ≤ i ≤ p − 1), C(S, t + 1)[i + 1] = C(S, t)[i + 1] and

C(R
′
1, t + 1)[i + 1] = C(R

′
1, t)[i + 1] because the element x does not map in the ordered set

C[i]. So, C(S, t + 1)[i] ∩ R1 � C(R
′
1, t + 1)[i].

For i = j using the assumption at time t and the proof for the fully-associative cache I have

C(S, t + 1)[i] ∩ R1 � C(R
′
1, t + 1)[i].

Therefore, C(S, t + 1)[i] ∩ R1 � C(R
′
1, t + 1)[i] for 0 ≤ i ≤ p − 1.

8.2.3 Concatenation Theorem

Theorem 2: Given two disjoint reference sequences R1 and R2 merged in any arbitrary

manner without re-ordering the elements of R1 and R2 to form a sequence S and given

the concatenation of R1 and R2 indicated by R1@R2, the number of misses produced by S

for any cache with the LRU replacement is greater than or equal to the number of misses

produced by R1@R2.

Proof: Let m1 indicate the number of misses produced by the sequence R1 alone and m2

indicate the number of misses produced by the sequence R2 alone. The number of misses

produced by R1@R2 is m1 + m2. Let M be the number of misses produced by S. I show

that m1 + m2 ≤ M . Let m
′
1 indicate the number of misses of R1 in S and let m

′
2 indicate

the number of misses of R2 in S. For a direct-mapped cache I showed that for any time

t, 0 ≤ t ≤ N , C(S, t) ∩ R1 ⊆ C(R
′
1, t) and for a fully-associative cache I showed that for

any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 � C(R
′
1, t). For a set-associative cache I showed by

induction that for any time t, 0 ≤ t ≤ N , 0 ≤ i ≤ p− 1, C(S, t)[i]∩R1 � C(R
′
1, t)[i], where

p is the number of ordered sets in the set-associative cache. This implies that if an element

of R1 results in a miss for the sequence R
′
1 it would result in a miss in the sequence S.

77

Thus, m1 ≤ m
′
1. By symmetry, I have m2 ≤ m

′
2. So, m1 +m2 ≤ m

′
1 +m

′
2 or m1 +m2 ≤ M ,

where M = m
′
1 + m

′
2 is the total number of misses in S. Therefore, the number of misses

M produced by S is greater than or equal to the number of misses m1 + m2 produced by

R1@R2.

8.2.4 Effect of Memory Line Size > One Word

For a given line size, if the sequences are defined such that the elements of the sequences

are on cache line boundaries, then the disjoint sequence theorem still holds.

If the elements in sequences are aligned for a cache line size L, then the theorem holds

for any line size ≤ L.

For an arbitrary cache line size, the disjoint sequence theorem cannot be applied because

the sequences that are disjoint for one cache line size l may not be disjoint for a cache line

size l′ > l.

8.3 Partitioning with Disjoint Sequences

The notion of disjoint sequences can is applied to cache partitioning. In this approach,

the cache space is divided into cache partitions and the address sequence is divided into

disjoint set of groups. Each group consists of a merge sequence of one or more disjoint

address sequences. One or more groups are mapped to each cache partition and the ad-

dresses belonging to a group can replace only the addresses belonging to the same group.

Cache partitioning reduces the effective cache size available to different groups of disjoint

sequences. The overall hit rate depends on the potential increase self-interference within the

groups due to smaller cache space and decrease in the cross-interference from other groups

of addresses. The hit rate guarantees as compared to the LRU replacement policy over the

whole cache space hold under ertain conditions as described in Section 8.3.2.

8.3.1 Non-Disjointness Example

Assume a two word cache C. Assume that the sequences have read accesses only. Consider

a merged sequence S: {1.a 2.b 3.b 4.c 5.c 6.a 7.a 8.b}. Now consider the sequence divided

into two sequences one going to cache C1 and the other going to cache C2, where C1 and

C2 are same size caches as C. The results for various cases are shown in Table 8.1. If the

78

Non-disjoint Sequences
C1: 1.a 2.b 4.c 6.a

miss miss miss miss
C2: 3.b 5.c 7.a 8.b

miss miss miss miss
Total Misses = 8

Disjoint Sequences {a} {b, c}
C1: 1.a 6.a 7.a

miss hit hit
C2: 2.b 3.b 4.c 5.c 8.b

miss hit miss hit hit
Total Misses = 3

Only One Cache With Two Words
C: 1.a 2.b 3.b 4.c 5.c 6.a 7.a 8.b

miss miss hit miss hit miss hit miss
Total Misses = 5

One Word Partition for Each Sequence
Cp1: 1.a 6.a 7.a

miss hit hit
Cp2: 2.b 3.b 4.c 5.c 8.b

miss hit miss hit miss
Total Misses = 4

Table 8.1:
√

Non-disjoint Sequences Example

divisions of the sequence are not disjoint, it results in total of 8 misses. On the other hand,

if the sequence divisions S1 and S2 are disjoint and assigned to caches C1 and C2, it results

in total of 3 misses. If the sequence S is applied to the cache C, it results in a total of 5

misses. Now, if C is partitioned into two one-word partitions, then it results in a total of 4

misses. So, the partitioning of the cache C based on disjoint sequences S1 and S2 saves one

miss compared to the case of the sequence S being mapped to cache C.

8.3.2 Two Sequence Partitioning Example

Given two sequences, s1 and s2, with the number of accesses n1 and n2 if the number of

misses of these sequences is m together for cache size C. If used individually, the number

of misses are m1 and m2. I have m1 + m2 ≤ m. Now if the f is the fraction of the cache

C assigned to S1, then the goal is to find f such that mfs1 + mfs2 ≤ m. That is the sum

79

m2

m1

C0

n2+m1

n1+m2

m1+m2

m

Cp

n2

n1

Figure 8-1:
√

Two Sequence Partitioning

of the number of misses mfs1 of s1 for the size f*C and number of misses mfs2 of s2 for

the size (1-f)*C is ≤ m. If footprint(s1)+footprint(s2) ≤ C, then m1+m2=m. Otherwise,

m1+m2 ≤ m and let m = m1+m2+mi, where mi are the interference misses. For a given

partition, if mp1 = m1 + mi1 and mp2 = m2 + mi2, then the condition required is: mi1

+ mi2 <= mi Given the curves for both the sequences of number of misses vs cache size.

For a solution to be feasible, there should be a cache size c1 and c2 such that mc1 < m1 +

mi, mc2 < m2 + mi, and c1 + c2 <= C. Or the superimposed curves have a point in the

range m1+m2 : m.

8.3.3 Partitioning Conditions

The condition for a partitioning based on disjoint sequences to be as good as or better

than LRU is derived here. Assuming a Modified LRU replacement policy as a partitioning

mechanism. Given a set of sequences S1, S2, ..., Sn, and a fully-associative cache C. Assume

the cache partitions C1 and C2 where S1 is assigned to C1 and S2, ..., Sn are assigned to

C2. There will not be any additional misses in the partitioning based on C1 and C2, if the

following statement holds for both the partitions:

Whenever a Kl bit can be set in C1 or C2 based on their sizes, it can also be set in C

for S. This means that whenever an element is replaced from a partition, it would also be

replaced in the case where the merged sequence was applied to the whole cache.

80

In terms of the reuse distances, whenever the reuse distance of an element in the sequence

S1 (S2) is ≥ C1 (≥ C2), then the reuse distance for the same element in S is ≥ C. This

means that whenever the reuse distance of an element is greater than the partition size, its

reuse distance in the merged sequence is greater than the full cache size.

8.4 Information for Partitioning

The information about the sequences can be the footprint for a sequence or the cache usage

efficiency for the sequence.

8.4.1 Cache Usage

The cache usage increases and the conflict misses reduce as the associativity increases for

the same number of sets. There are different ways to measure the cache usage information.

• H/(M*b), where H is the number of hits and M is the number of misses and b is the

block size.

• percentage of words used in a cache line (H*(percentage of b)/(M*b)).

8.4.2 Sequence Footprints

Profile information can be used to estimate the relative footprint sizes of the sequences.

8.4.3 Sequence Coloring

There are different ways to determine number of sequences for partitioning and the con-

stituents of the sequences. The sequences may consist of different address ranges or load/store

instructions. The sequences are combined into groups by sequence coloring. The groups

are mapped to a cache partition. The information for sequence coloring consists of:

• usage pattern classes (they can be associated with the access method)

• random accesses with asymptotic footprint of certain size with certain usage efficiency

• stride-based accesses with usage efficiency less than some number and reuse distance

more than some number

81

The load/store instructions can be classified according to their cache line usage and

strides of accesses. This load/store classification information gives an indication of the

sharing possible. The load/store classification information can be obtained statically or

dynamically.

Sequence Coloring Information

The cache lines are divided into groups and each group has some partitioning information

associated with it. Some cache lines may not be part of any group. Each group is assigned

a code that is used to maintain partitioning information and to make replacement decisions.

There are three types of partitioning information considered for each group:

• exclusive flag: when this flag is set for a group g, it indicates that only the cache

lines belonging to group g can replace a cache line in group g. This partitioning

information requires some way of resetting this flag to release the cache lines from

this restriction.

• minimum size: this value for a group specifies the minimum number of cache lines

per set for that group. This requires some way of avoiding locking the whole cache.

• maximum size: this value for a group specifies the maximum number of cache lines

per set for that group.

8.5 Static Partitioning

The cache partitioning should improve the hit rate compared to the unpartitioned cache

using the LRU replacement policy. So, the goal is to reduce the misses for the groups of

sequences. If cost of self-interference is smaller than the cross interference then choose the

self-interference that reduces the sharing among other sequences. The groups would get the

cache partition size that is not going to increase their miss rate compared to the case where

the group was sharing the whole cache space with the other sequences.

8.5.1 Algorithm

Given a number of sequences, determine the grouping of sequences along with the partition

sizes for the groups such that number of misses is minimized and the partition sizes add up

82

max misses = INF
sol g1 = {}
sol g2 = {}

cluster nodes(G, g1, g2) {
if (G not empty) {
nd = select node(G); /* smallest sum of edge weights */
g1’ = assign node(nd, g1);
cluster nodes(G-{nd}, g1’, g2);
g2’ = assign node(nd, g2);
cluster nodes(G-{nd}, g1, g2’);

}
else {
m g1 = estimate misses(g1);
m g2 = estimate misses(g2);
if (m g1+m g2 < max misses) {
sol g1 = g1;
sol g2 = g2;

}
}

}

Figure 8-2:
√

Clustering Algorithm

to the cache size. The function estimate misses uses the information about the sequences

in the group, the interleaving of sequences, and the group partition size to estimate the

misses. The algorithm partitions recursively assuming two partitions (2) and the sizes of

the partitions are variable in the steps of the granularity of partitioning.

1. For each partition size pair, construct a Sequence Interaction Graph and Cluster the

sequence nodes into two groups using the Clustering Algorithm shown in Figure 8-2.

2. Choose the partition size pair with the minimum estimated misses

3. If a partition in the chosen pair contains more than one sequence, recursively partition

the partitions in the pair

Example

Consider six sequences S1, S2, S3, S4, S5, S6. Start with two partitions 1/4 C and 3/4

C.

a. {S1} -> P1 = (1/4 C),

83

tag

code code code

Ex

addr (cache index)
tag tag tag

code

code info

code

MaxMin

Code Table

Modified Replacement Logic

Data Cache

addr
code

Figure 8-3:
√

Hardware Support for Flexible Partitioning

{S2, S3, S4, S5, S6} -> P2 (3/4 C)

b. {S2, S3} -> P2_1 (1/4 C),

{S4, S5, S6} -> P2_2 (1/2 C)

Start with 1/2 C and 1/2 C and Clustering should lead to:

a. {S1, S2, S3} -> P1 (1/2 C),

{S4, S5, S6} -> P2 (1/2 C) then

b. {S1} -> P1_1 (1/4 C),

{S2, S3} -> P1_2 {1/4 C},

{S4, S5, S6} -> P2 (1/2 C)

8.5.2 Hardware Support

Modified LRU Replacement

The replacement algorithm is a modified LRU replacement algorithm with the cache line

group partitioning information. On a hit in a cache set, the cache lines in the set are

reordered according to the LRU ordering of the cache lines in the accessed set. On a miss

in a cache set, the partitioning information for the missed cache line group is checked from

the group partitioning information table. If the minimum size is specified, and the number

of cache lines belonging to the missed cache line’s group are less than the minimum, then

a cache line from other group is replaced. Otherwise, if the maximum size is specified and

the current number of cache lines is equal to the maximum size, then the new cache line

replaces the LRU cache line in the same group. Otherwise, a cache line from other group

84

Randomize

Partition Size

Figure 8-4: Cache Tiles for Cache Partitioning

is replaced. When a cache line from other group is chosen, the priority is to use the LRU

cache line, without exclusive flag or minimum size violation.

There is a group partitioning information table which stores the information about the

current groups. Also, each cache line has group code bits. The LRU replacement logic is

modified to incorporate the changes from the LRU replacement algorithm. There are also

some state bits to get the group of the cache line on an access and there are two ways to

communicate it to the hardware: using data address ranges or load/store annotations.

Cache Tiles

The above approach for partitioning is based on horizontal partitioning, i.e., the partitions

are controlled using the number of cache lines for different groups in a cache set. The other

way of partitioning is vertical partitioning where number of sets are used to control the

partitioning for the cache lines of different groups. If both ways of controlling the partitions

are used, then the partitions are called cache tiles.

One way to approximate vertical partitioning is based on the observation that the high

order bits in the tag do not change much compared to the low order bits. One simple way

to implement vertical partitioning is to swap some high order bits of the tag with high order

bits of the index. For example, take the p tag bits (starting from some fixed position) and

use them as the upper p bits of the index to the cache and store the unused p index bits as

85

part of the tag. The value p is stored for each cache line as well. When the cache lines are

read, the tags are matched appropriately. To specify the partition size associated with an

address, a load/store instruction with value p is used. There are several issues associated

with this approach that need be dealt with to use this approach with disjoint sequences.

Multi-tag Sharing

The cache line usage in terms of the number of words in a cache line used before its eviction

may vary for different groups. If the cache line usage is low, then the data words of a cache

line can be shared by more than one cache line addresses. The sharing is achieved using

multiple tags for the cache line data words. This is in a sense restricting the space allowed

for the conflicting cache line addresses that would not use all the space in the cache line.

A multi-tag based sharing of data word space of cache lines can be used to achieve sharing

among sequences. This approach may use the ideas of rotating tags, differential tags, and

distinct tags to reduce the multi-tag overhead and to maintain the same latency of accesses.

8.5.3 Software Support

The groups for partitioning need to be defined along with the partitioning information.

I propose to use disjoint sequences to define the groups and the associated partitioning

information.

First, the sequences need to be defined that would represent different groups. This can

be done using the compiler analysis that would identify the variables with disjoint address

ranges. A collection of variables can be used as a group and when this group is accessed in

the program, it will form a sequence which would be disjoint from other sequences.

Second, the partition size information needs to be determined for different groups. This

information can be derived using the footprint information and cache usage efficiency for

different groups and they can be estimated either by compiler or profile analysis. The size

of the partition that is not going to reduce the hit rate is given by the number of live blocks

in the sequence. A group should be assigned the partition size that is not going to increase

its miss rate compared to the case where the group were to share the space with the other

groups. The miss rate would not increase, if the cost of self-interference is less than the cost

of cross-interference in terms of misses.

The above group definition and partition size assignment would approximate the result

86

1: Determine Disjoint IDs
2: Determine Partition Sizes
3: Assign Partition Sizes

Figure 8-5: � Profile-based Partitioning Algorithm

of the disjoint sequence theorem. This derived information is incorporated into the pro-

gram using appropriate instructions or annotations to communicate this information to the

hardware support logic.

8.6 Partitioning and Prefetching

The partitioning approaches are combined with hardware-based sequential or stride prefetch-

ing prefetching to evaluate the impact of partitioning on reducing cache pollution due to

prefetching.

8.7 Experiments

8.8 Hardware Cost

Each cache line will require the number of bits to indicate the code of the cache line. Also, a

table of the maximum number of cache lines for a given code. The replacement logic would

have to be modified to incorporate the changes from the LRU policy.

87

Chapter 9

♣ Evaluation

The hardware-based and profiled-based Kill+LRU without prefetching and with prefetching

were evaluated using a selection from the Spec2000, Mediabench, and Mibench benchmarks.

First, the compiled benchmarks from the three benchmarks suites were simulated using

sim-cheetah to get LRU miss rate and OPT miss rate numbers. The LRU and OPT

miss rate numbers gave an upper bound of the potential miss rate improvement possible

using Kill+LRU replacement over LRU. Tweleve benchmarks from the Spec2000 suite were

selected for our experiments. Some of the benchmarks from the Mediabench and Mibench

suites could not be compiled or run successfully in the Simplescalar simulators and therefore

could not be used for the experiments. In addition, some of the Mediabench and Mibench

benchmarks had very low miss rates and they were not chosen for the experiments. The

Spec2000 benchmarks are shown in Table 9.2.1 and Mediabench and Mibench benchmarks

are shown in Table 9.2.2 and the chosen benchmarks are marked with an ’*’.

• Describe 2b1b. and why Simpoint-based fastforward and number of instructions. Stan-

dard Multiple 100M

9.1 Simulation Framework

9.1.1 Profile-based Analysis

9.1.2 Annotation Support

* GENERATING and Incorporating profile-based information in simulation - collect info

from profile run, read into tables and apply during another run. - look at pcstat in sim-

88

SpecINT 2000
gzip Compression
vpr Placement and routing
gcc C compiler
mcf Combinatorial optimization
crafty Chess
parser Word processing
eon Computer visualization
perlbmk PERL programming language
gap Group theory interpreter
vortex Object-oriented database
bzip2 Compression
twolf place and route simulator

SpecFP 2000
wupwise Physics
swim Shallow water modeling
mgrid Multi-grid solver
applu Partial differential equations
mesa 3-D graphics library
art Image recognition
equake Seismic simulation
facerec Image processing
ammp Computational chemistry
sixtrack High energy nuclear physics
apsi Pollutant distribution

Table 9.1:
√

Benchmarks and Descriptions

outorder

9.2 Benchmarks

BENCHMARKS: SPECFP not important to embedded world SpecFP benchmarks for em-

bedded caches aren’t too plausible benchmarks matching embedded system focus larger

set of benchmarks: mediabench and then pick from them. Mediabench problem is that

everything fits in the cache. Maybe run expts on smaller caches.

89

Mediabench Benchmarks
adpcm ADPCM audio coding
g721 CCITT voice compression
jpeg Lossy compression for still images
ghostscript Postscript interpreter

Mibench Benchmarks
patricia A Patricia trie data structure
fft Fast Fourier Transform
susan Image recognition package

Table 9.2:
√

Mediabench and Mibench Benchmarks and Descriptions

9.2.1 Spec2000

9.2.2 Multimedia and Mibench

Some of the Mediabench and Mibench benchmarks could not be compiled successfully for

simulation and some of the benchmarks compiled successfully but could not be simulated due

to problems with system calls, libraries, and/or tables. The complete list of the Mediabench

and Mibench benchmarks with the issues is shown in Table ??.

9.3 Inputs

The Spec2000 benchmarks have test, train, and ref inputs available for simulation. I

generated the eio traces for the Spec2000 benchmarks. For perlbmk benchmark eio traces

could not be generated for the test and train inputs.

The eio traces were generated for the full length of the test and train inputs. Since the

test and train inputs are used to derive the profile-based information, the start pc of the eio

traces of the SP1 and SP2 was identified and used to fast-forward until it was encountered

the first time.

90

Benchmark-ref input SP2: Simpoint Weight SP1: Simpoint Weight
ammp-ref 372 0.122334 776 0.461188
applu-ref 830 0.101392 1873 0.208515
apsi-ref 478 0.198607 2792 0.488039
art-110 56 0.157914 140 0.272760
bzip2-source 359 0.213083 679 0.281967
crafty-ref 818 0.182404 1773 0.250154
eon-cook 638 0.182350 78 0.208574
equake-ref 1124 0.364969 1011 0.487386
facerec-ref 11 0.366304 1467 0.492008
gap-ref 83 0.114282 1837 0.561764
gcc-200 723 0.120550 101 0.352161
gzip-graphic 260 0.221781 470 0.353885
mcf-ref 495 0.302261 219 0.316809
mesa-ref 491 0.215482 1827 0.285771
mgrid-ref 646 0.171907 1352 0.213524
parser-ref 630 0.190925 1468 0.241640
perlbmk-splitmail 251 0.216495 939 0.664820
sixtrack-ref 168 0.168808 2991 0.221467
swim-ref 57 0.100518 202 0.158969
twolf-ref 122 0.143948 1123 0.166146
vortex-one 360 0.178187 846 0.395038
vpr-route 265 0.211733 351 0.240282
wupwise-ref 2195 0.410728 2721 0.431894

Figure 9-1: SPEC2000 Multiple Standard 100M Simpoints: SP1 and SP2

9.3.1 Train

9.3.2 Test

9.4 Application Phases

The points in the benchmarks for simulation are chosen based on the simulation points

information available for Spec2000 benchmarks using the Simpoint 3.0 algorithm [160].

The Spec2000 benchmarks were simulated for 100 million instructions after fast-forwarding

the (early simpoint - 1)*100 million instructions. The weights associated with the simpoints

for the benchmarks were used to determine the early simpoint to choose for simulation. The

highest weight simpoint was chosen for each benchmark.

91

9.4.1 Simpoint Phase1

9.4.2 Simpoint Phase2

9.5 Simulation Length

9.5.1 100 Million

9.5.2 1000 Million

9.6 Processor Types

9.6.1 Superscalar Inorder

9.6.2 Superscalar Out-of-order

9.7 Cache Configurations

9.7.1 Cache Size

9.7.2 Associativity

9.7.3 Block Size

- what does it mean when hit rate changes with block size one way or the other and how

do the schemes perform for it

9.8 MI-LRU Evaluation

9.8.1 Hardware-based Kill+LRU Experimental Results

The selected benchmarks were simulated using a simple pipelined processor configuration

with no speculation and in-order execution and IL1 and DL1 caches. This configuration

gives the baseline miss rate and IPC numbers for the hardware-based Kill+LRU mech-

anisms. The DL1 miss rate for the selected benchmarks using different hardware-based

Kill+LRU approaches are shown Table 9.8. It turns out that the hardware-based Kill+LRU

does not lead to any miss rate improvement for the benchmarks. The Table 9.8 shows the

Kill prediction accuracy and coverage for the benchmarks.

92

Processor
Clock rate 2GHz
Reorder Buffer 128 entries
Load/Store Queue 128 entries
Issue width 8 instr per cycle

Cache Hierarchy
L1 Data Cache Size: 32KB

Associativity: 4-way
Block Size: 32 bytes
Hit latency: 1 cycle
MSHRs: Unlimited

L1 Instr Cache Size: 32KB
Associativity: 4-way
Block Size: 32 bytes
Replacement: LRU
Hit latency: 1 cycle

L2 Data Cache Size: 1MB
Associativity: 4-way
Block Size: 64 bytes
Replacement: LRU
Hit latency: 12 cycles
MSHRs: Unlimited

L2 Instr Cache Size: 1MB
Associativity: 4-way
Block Size: 64 bytes
Replacement: LRU
Hit latency: 12 cycles

Memory Latency: 70 cycles

Table 9.3:
√

System Configuration for Experiments

Benchmark LRU ISF2 ISF3 DBSF2 DBSF3 KP2 KP3 KPB2 KPB3

Table 9.4:
√

Hardward-based Kill+LRU Miss rates for Spec2000, Mediabench, and Mibench
Benchmarks. Spec2000 results based on 16KB, 4-way, 32-byte blocks DL1 and Mibench and
Mediabench results based on 8KB, 4-way, 32-byte blocks DL1.

Benchmark LRU XROT D XROT I RDIST

Table 9.5:
√

Hardward-based Kill+LRU Miss rates for Spec2000, Mediabench, and Mibench
Benchmarks. Spec2000 results based on 16KB, 4-way, 32-byte blocks DL1 and Mibench and
Mediabench results based on 8KB, 4-way, 32-byte blocks DL1.

93

Benchmark Kpred Accuracy Kpred Coverage

Table 9.6:
√

Hardward-based Kill+LRU Prediction Accuracy and Coverage for Spec2000,
Mediabench, and Mibench Benchmarks

9.8.2 Analysis

The KILL operation is not very effective on the benchmarks because the number of iterations

in a loop is greater than the advantage the KILL operation can give. The KILL operation

gives advantage only when a cache line is marked for replacement when it is not the LRU

cache line and the LRU data that would otherwise be replaced is used in the near future.

9.9 MI-LRU+Keep Evaluation

9.10 MI-LRU+Prefetching Evaluation

9.11 Static Partitioning Evaluation

9.12 Profile-based Instructions Overhead

9.12.1 Static Instruction Overhead

9.12.2 Dynamic Instruction Overhead

9.13 SW/HW Cost vs. Performance Trade-off Analysis

COST: cost and what happens to good ones? made worse by new addition or extra hardware

could have been used elsewhere to make them work.

9.13.1 Hardware Table Sizes

9.13.2 Block-associated Sizes

ANALYSIS: analyze results why works and does not work what works and what does not

work. document that too.

94

Chapter 10

Related Work

On-chip memory plays an important role in the overall performance of a general-purpose

or embedded system. As a result, a major portion of the chip area of modern processors is

occupied by on-chip memory (caches, SRAM, ROM). There has been lot of research effort

focussed on improving on-chip memory performance using a variety of architectural tech-

niques. Previous work that is related to the mechanisms presented in this thesis is described

in this chapter. In particular, related work for cache performance and predictability and

on-chip SRAM usage is described.

Caches are an integral part of modern processors (e.g., Pentium 4 [62], Alpha 21264 [81],

MIPS R10000 [201], and IA-64 [50]) and embedded processors (e.g., ARM9TDMI [1]). Many

processors use out-of-order execution to hide cache miss latencies and use miss informa-

tion/status handling registers (MSHRs) to allow multiple outstanding misses to the cache.

Several different approaches to improve cache performance and some approaches to improve

cache predictability are summarized below.

10.1 Memory Exploration in Embedded Systems

Memory exploration approaches use different on-chip memory parameters and find appro-

priate combinations for the desired application domain. Panda, Dutt and Nicolau present

techniques for partitioning on-chip memory into scratch-pad memory and cache [131]. The

presented algorithm assumes a fixed amount of scratch-pad memory and a fixed-size cache,

identifies critical variables and assigns them to scratch-pad memory. The algorithm can be

run repeatedly to find the optimum performance point. A system-level memory exploration

95

technique targeting ATM applications is presented in [163]. A simulation-based technique

for selecting a processor and required instruction and data caches is presented in [90].

I have focussed on independently improving on-chip SRAM performance and cache

performance in this thesis.

10.2 Cache Architectures

There are several cache parameters that can be optimized to improve cache performance

as well [58]. The effectiveness of direct-mapped caches is studied in [60] and the effect

of associativity in caches is described in [61]. In the context of direct-mapped caches,

pseudo-associativity was achieved using column-associative caches [2]. The issue bandwidth

limitation in caches and proposed solutions are discussed in [16, 17].

Different cache architectures have been proposed either to improve cache performance

or to reduce power consumed by the cache. An adaptive non-uniform cache structure is

presented in [83] for wire-delay dominated caches. A cool-cache architecture is presented

in [178, 179] and a direct-addressed cache architecture is proposed in [194] to reduce cache

power.

As described in Chapter ??, my approach is to augment the replacement policy of a

set-associative cache to improve cache performance and predictability.

10.3 Locality Optimization

The spatial and temporal locality of memory accesses is used to improve cache performance

either in software or in hardware. The software approaches use static locality optimization

techniques for loop transformations in the compiler [75]. Some approaches use cache miss

analysis to guide the compiler optimizations [54, 26]. An approach that makes use of spatial

footprints is presented in [92].

Some approaches use hardware structures to detect and exploit specific data access

patterns (e.g., streams) to improve cache performance. In order to improve direct-mapped

cache performance, a fully-associative cache with prefetch buffers was proposed in [73]. The

use of stream buffers to improve cache performance was described in [129]. Dynamic access

reordering was proposed in [114] and improving bandwidth for streamed references was

presented in [115]. A hardware-based approach that uses hardware miss classification was

96

proposed in [37] and a spatial pattern prediction approach was presented in [27]. A locality

sensitive multi-module cache design is presented in [150]. The run-time detection of spatial

locality for optimization is described in [72].

In my work, I have focussed on a general method to detect dead data and have not

specifically targeted detection of streams. However, the techniques presented to determine

dead data, in many cases, will detect short-lived streaming data and mark the data as dead.

10.4 Cache Management

Some current microprocessors have cache management instructions that can flush or clean a

given cache line, prefetch a line or zero out a given line [112, 117]. Other processors permit

cache line locking within the cache, essentially removing those cache lines as candidates to

be replaced [40, 41]. Explicit cache management mechanisms have been introduced into

certain processor instruction sets, giving those processors the ability to limit pollution.

One such example is the Compaq Alpha 21264 [80] where the new load/store instructions

minimize pollution by invalidating the cache-line after it is used.

An approach for data cache locking to improve cache predictability is presented in [185].

In [110] the use of cache line locking and release instructions is suggested based on the

frequency of usage of the elements in the cache lines. In [170], active management of data

caches by exploiting the reuse information is discussed along with the active block allocation

schemes. An approach using dynamic reference analysis and adaptive cache topology is

presented in [133]. The approach using dynamic analysis of program access behavior to pro-

actively guide the placement of data in the cache hierarchy in a location-sensitive manner

is proposed in [71]. In [57] a fully associative software managed cache is described. An

integrated hardware/software scheme is described in [55]. The adaptive approaches use

different control mechanisms to improve cache performance. A method based on adaptive

cache line size is described in [184]. A method for adaptive data cache management is

described in [175]. Cache management based on reuse information is addressed in [145].

The keep instructions in Chapter ?? bear some similarity to the work on cache line

locking [110, 185]. the methods to determine what data to keep used are different. I

provide hit rate guarantees when my algorithm is used to insert cache control instructions.

97

10.5 Replacement Policies

Several replacement policies were proposed for page-based memory systems, though the

tradeoffs are different for cache replacement policies. An early-eviction LRU page replace-

ment (EELRU) is described in [164]. Belady’s optimal replacement algorithm was presented

in [10] and its extension using temporal and spatial locality was presented in [171]. The

efficient simulation of the optimal replacement algorithm was described in [168].

Compiler analysis based methods to improve replacement decisions in caches and main

memory are presented in [191, 14]. A hardware-based approach to detect dead blocks and

correlate them blocks to prefetch is presented in [94]. An approach that uses time-keeping

in clock cycles for cache access interval or cache dead time is presented in [63]. In [197] some

modified LRU replacement policies have been proposed to improve the second-level cache

behavior that look at the temporal locality of the cache lines either in an off-line analysis

or with the help of some hardware. In [98], policies in the range of Least Recently Used

and Least Frequently Used are discussed.

10.6 Prefetching

In hardware sequential prefetching, multiple adjacent blocks are prefetched on a block access

or a miss. A common approach is one block lookahead (OBL) where a prefetch is initiated

for the next block when a block is accessed [165]. A variation of the OBL approach uses

prefetch-on-miss and tagged prefetch. Cache pollution is a problem if more than one block

is prefetch for a block access [139]. Another hardware approach for prefetching uses stride

detection and prediction to prefetch data [28, 30]. Some approaches combine prefetching

with other mechanisms. For example, the dead-block prediction and correlated prefetching

is described for direct-mapped caches in [94] and prefetching and replacement decisions have

been made in tandem in the context for I/O prefetching for file systems [21, 132].

The work of [93, 94] was one of the first to combine dead block predictors and prefetching.

The prefetching method is intimately tied to the determination of dead blocks. Here, I have

decoupled the determination of dead blocks from prefetching – any prefetch method can

be controlled using the notion of dead blocks. I have used a simple hardware scheme or

profile-based analysis to determine dead variables/blocks, and a simple hardware prefetch

technique that requires minimal hardware support. The predictor-correlator methods in

98

[94] achieve significant speedups, but at the cost of large hardware tables that require up-to

2MB of storage.

There have been many proposals for software prefetching in the literature. Many tech-

niques are customized toward loops or other iterative constructs (e.g., [91]). These software

prefetchers rely on accurate analysis of memory access patterns to detect which memory

addresses are going to be subsequently referenced [120] [106] [105] [128].

Software has to time the prefetch correctly – too early a prefetch may result in loss of

performance due to the replacement of useful data, and too late a prefetch may result in

a miss for the prefetched data. I do not actually perform software prefetching in my work

– instead software control is used to mark cache blocks as dead as early as possible. This

significantly reduces the burden on the compiler, since cycle-accurate timing is not easy to

predict in a compiler.

There are many prefetching approaches that target different type of access patterns

and use different type of information for prefetching. A prefetching approach based on

dependence graph computation is proposed in [5] and an irregular data structure prefetching

is considered in [77].

Finally, my work has not resulted in new prefetch methods, but rather I have focussed

on mitigating cache pollution effects caused by aggressive prefetch methods.

10.7 Cache Partitioning

Cache partitioning has been proposed to improve performance and predictability by diving

the cache into partitions based on the needs of different data regions accessed in a pro-

gram. A technique to dynamically partition a cache using column caching was presented in

[36]. While column caching can improve predictability for multitasking, it is less effective

for single processes. A split spatial/non-spatial cache partitioning approach based on the

locality of accesses is proposed and evaluated in [149, 138]. The data is classified into either

a spatial or temporal and stored in the corresponding partition.

Another benefit of cache partitioning is that it avoids conflicts between different data

regions by mapping them to different regions. An approach to avoid conflict misses dynam-

ically is presented in [11]. There are also approaches for page placement [20, 159], page

coloring [15], and data layout [32, 33, 35] to avoid conflict misses. A model for partition-

99

ing an instruction cache among multiple processes has been presented [101]. McFarling

presents techniques of code placement in main memory to maximize instruction cache hit

ratio [113, 174].

I have developed a theory for cache memory partitioning based on disjoint access se-

quences that can provide guarantees of improved behavior when exploited. While techniques

that exploit this theory have been developed, they have not been fully implemented and

evaluated at the time of writing this thesis.

New References

comparing phase detection techniques [46] identifying and exploiting spatial regularity [118]

load stream behavior [148] computation regrouping [136] dynamic dead-instruction [19]

locality through reuse distance analysis [49] using stack distances [22] miss prediction across

all program inputs [208]

Spatial characteristics of load instructions [202] Spec CPU2000 performance [59] Char-

acterization of Spec2000 benchmark suite [39] Cache profiling and spec benchmarks [96]

Output value locality of Spec and Mediabench [79] Memory behavior of Spec2000 bench-

mark suite [147] d-tlb behavior of SPEC CPU2000 benchmarks [76]

Mibench benchmark suite [56] MinneSpec benchmarks [103] Mediabench benchmarks [97]

A detailed analysis of Mediabench [13]

Off-chip memory traffic measurements [44] The filter cache [88] on-chip stack memory

organization [111] Allocation of global data objects [162] Cool-mem [7] minimax cache [180]

memory behavior of scalars [177] dynamic allocation [124] lightweight set buffer [199] tag

comparison elimination [207] highly configurable cache architecture [203] reducing cache

pollution of prefetching [144] managing leakage energy in cache hierarchies [100] static

pattern predictor [187] phase-based cache resizing [137] memory design exploration [161]

region-based caching [99] profiling tools for hardware/software partitioning [169] reducing

high-associativity cache power [125] path-based hardware loop prediction [42] multimedia

application characteristics [6] hardware loop unrolling [43] characterization of embedded

applications [155] analysis of cache performance of multimedia [198] memory system per-

formance of multimedia [166] characterization of multimedia on general purpose architec-

ture [86]

100

enabling QoS in shared caches [65] process dependent cache partitioning [89] improving

disk hit-ratios through cache partitioning [173] two level partitioning and loop schedul-

ing [192] timing analysis of data caches [193]

direct addressed scratchpad memories [31] probabilistic miss equations [53] reconfig-

urable caches for media processing [143] compiler approach reducing data cache energy [206]

compile-time analysis of cache behavior [186] optimal partitioning of cache memory [167]

footprints in the cache [172] dynamic programming algorithm for partitioning [153] cus-

tomizable partitioned caches [134] towards effective embedded processors [135] reducing

cache conflicts [102] eliminating address translation bottleneck [25] paged cache [24] par-

titioned first-level cache design [142] compiler support for software-based cache partition-

ing [123] process-dependent partitioning strategy for cache memories [45] power aware par-

titioned cache architecture [84] partitioned instruction cache for energy efficiency [87] span

cache [195] direct addressed cache [196]

v-way cache: demand based associativity [140] cooperative caching with keep-me and

evict-me [152] reuse distance based miss rate prediction [52] fair cache sharing and par-

titioning in chip mutiprocessor [85] combining cooperative hardware/software prefetching

with replacement [190] dynamic memory allocation for scratch-pad based embedded sys-

tems [176] phase-based miss rate prediction [158] locality phase prediction [157] transition

phase classification and prediction [95] data prefetching on the HP PA-8000 [151]

selective cache ways [4] design space optimization of embedded memory systems via

remapping [141] bridging processor memory performance via data remapping [130]

flexcache: a framework for flexible compiler generated data caching [119] heterogeneous

memory management for embedded systems [8] compiler support for scalable and efficient

memory systems [9] cam-tag cache resizing [205] way memoization in instruction caches [108]

highly-associative caches for low-power processors [204]

enhancing memory level parallelism via recovery-free value prediction [209]

tag correlating prefetchers [64] software and hardware data prefetching schemes [29]

guided region prefetching [189] compiler-assisted data prefetch controller [182] profile-guided

post-link stride prefetching [107] dynamic hot data stream prefetching [34] filtering superflu-

ous prefetches [104] data prefetching techniques [181] data prefetch mechanisms survey [183]

exploiting choice in resizable cache design to optimize energy-delay [200] smart memories

- a modular reconfigurable architecture [109]

101

LIRS replacement policy [69] self-correcting lru replacement policies [74] cost-sensitive

cache replacement algorithms [68] optimal replacements with two miss costs [67] compiler

enhancement of global cache reuse [47] reuse distance analysis [48] reuse distance as a metric

for cache behavior [12]

dynamical adjustment of block replacement algorithms [188] kora-2 cache replacement

policy [82] neural networks-based adaptive cache replacement [126] cache decay to reduce

leakage power [78] modeling live and dead lines in cache memory systems [116] optimality

proof of LRU-K page replacement algorithm [127] page replacement for general caching

problems [3]

efficient management of memory hierarchies in embedded dram systems [154] run-time

cache bypassing [70] runtime identification of cache conflict misses: adaptive miss buffer [38]

filter cache management approach [146]

predictability and optimization of multiprogrammed caches [156] understanding corre-

lation profiling [122] predicting data cache misses through correlation profiling [121] tight

bound on task interference in instruction caches [51]

102

Chapter 11

Conclusion

11.1 Summary

The on-chip memory in embedded systems may comprise of a cache, an on-chip SRAM, or a

combination of a cache and an on-chip SRAM. The problems associated with on-chip cache

in embedded systems are addressed to improve cache performance, cache predictability,

reduce cache pollution due to prefetching.

The problems associated with the cache performance and predictability in embedded sys-

tems were addressed using a intelligent replacement mechanism. The theoretical foundation

for the cache mechanism was developed along with the hardware and software aspects of

the mechanism. Intelligent replacement was evaluated on a set of benchmarks to measure

its effectiveness. It improved the performance of the studied benchmarks and improved

cache predictability by improving its worst-case application performance over a range of

input data. This increased predictability makes caches more amenable for use in real-time

embedded systems.

The problem of cache pollution due to prefetching was addressed by integrating the

intelligent cache replacement mechanism with hardware prefetching in a variety of ways.

I have shown using analysis and experiments with a parameterizable hardware prefetch

method that cache pollution, a significant problem in aggressive hardware prefetch methods,

can be controlled by using the intelligent cache replacement mechanism. The resultant

prefetch strategies improve performance in many cases. Further, I have shown that a new

prefetch scheme where 1 or 2 adjacent blocks are prefetched depending on whether there is

dead data in the cache or not works very well, and is significantly more stable than standard

103

sequential hardware prefetching.

The problem of cache performance, cache predictability and cache pollution due to

prefetching was also addressed using a cache partitioning approach. A concept of disjoint

sequences is used as a basis for cache partitioning. I derived conditions that guaranteed

that partitioning leads to the same or less number of misses than the unpartitioned cache

of the same size. Several partitioning mechanisms were designed which use the concept

of disjoint sequences. In particular, the partitioning mechanisms are based on a modi-

fied LRU replacement, cache tiles, and multi-tag sharing approach. In addition to the

hardware mechanisms static partitioning algorithm was developed that used the hardware

mechanisms for cache partitioning. The cache partitioning mechanisms were implemented

in the Simplescalar simulator and evaluated with and without prefetching on the Spec2000,

Mibench, and Mediabench benchmarks as described in Chapter 8.

11.2 Extensions

There are several extensions possible for the cache mechanisms described in this thesis.

Some of the extensions are described here.

11.2.1 Kill+LRU Replacement for Multiple Processes

The Kill+LRU replacement can be extended to multi-process environment where the infor-

mation about the process scheduling and process footprints can be used to derive the reuse

distance and used in determining the dead blocks for a process and marked as killed blocks

for Kill+LRU replacement.

11.2.2 Disjoint Sequences for Loop Transformations

The concept of disjoint sequences can be applied to improve performance using program

code transformations. I did some work on loop transformations using the concept of disjoint

sequences [?]. In this work, disjoint sequences were applied for loop distribution transfor-

mation. It can be extended to loop fusion, loop interchange, loop tiling, and other loop

transformations to improve program performance.

104

11.2.3 Hardware-based Cache Mechanisms

11.2.4 Profile-based Memory Exploration System

11.2.5 Kill+Prefetch at L2 level

When the L1 block is evicted, the L2 block can be marked to be killed. This will work when

the evicted block was the last use. or the reuse distance is L1+L2 unique blocks. The block

from L2 cannot be evicted until it is evicted from L1 to maintain the inclusion property.

105

Bibliography

[1] The ARM9TDMI Technical Reference Manual Rev 3, 2000.

[2] A. Agarwal and S.D. Pudar. Column-Associative Caches: a Technique for Reducing
the Miss Rate of Direct-Mapped Caches. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, pages 179–190, 1993.

[3] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general
caching problems. In Proceedings of the 10th Annual ACM-SIAM Symposium on
Descrete Algorithms, pages 31–40, Baltimore, MD, 1999.

[4] David H. Albonesi. Selective cache ways: On-demand cache resource allocation. In
Proceedings of the 32nd Annual ACM/IEEE Symposium on Microarchitecture, pages
248–259, Haifa, Israel, 1999.

[5] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Data prefetching
by dependence graph computation. In Proceedings of the 28st Annual International
Symposium on Computer Architecture, pages 52–61, 2001.

[6] Navneet Aron, Honggo Wijaya, Arjun Singh, and Varun Malhotra. Study of Multi-
media Application Characteristics. April 17 2003.

[7] Raksit Ashok, Saurabh Chheda, and Csaba Andras Moritz. Cool-mem: Combining
statically speculative memory accessing with selective address translation for energy
efficiency. In Proceedings of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS X), pages 133–143,
San Jose, CA, October 2002.

[8] Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous Memory Manage-
ment for Embedded Systems. In CASES ’01: Proceedings of the 2001 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pages
34–43, Atlanta, GA, November 16-17 2001.

[9] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Compiler sup-
port for scalable and efficient memory systems. IEEE Transactions on Computers,
Special Issue on Memory Systems, 50(11):1234–1247, November 2001.

[10] L.A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer.
IBM Systems Journal, 5(2):78–101, 1966.

[11] Brian K. Bershad, Bradley J. Chen, Denis Lee, and Theodore H. Romer. Avoiding
Conflict Misses Dynamically in Large Direct-Mapped Caches. In ASPLOS VI, 1994.

106

[12] Kristof Beyls and Erik H. D’Hollander. Reuse distance as a metric for cache behav-
ior. In Proceedings of the IASTED International Conference Parallel and Distributed
Computing and Systems, pages 617–622, Anaheim, CA, August 21-24 2001.

[13] Benjamin Bishop, Thomas P. Kelliher, and Mary Jane Irwin. A Detailed Analysis
of Mediabench. In Proceedings of the 1999 IEEE Workshop on Signal Processing
Systems (SiPS), pages 448–455, Taipei, Taiwan, October 20-22 1999.

[14] Angela Demke Brown and Todd C. Mowry. Taming the Memory Hogs: Using
Compiler-Inserted Releases to Manage Physical Memory Intelligently. In Proceedings
of the 4th Symposium on Operating Systems Design and Implementation (OSDI-00),
pages 31–44, October 2000.

[15] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. Compiler-
directed page coloring for multiprocessors. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 244–257, Cambridge, MA, October 1996.

[16] D.C. Burger, J.R. Goodman, and A. Kagi. Memory Bandwidth Limitations of Future
Microprocessors. In Proceedings of the 23rd International Symposium on Computer
Architecture, pages 78–89, Philadelphia, PA, May 1996.

[17] Doug Burger. Hardware Techniques to Improve the Performance of the Proces-
sor/Memory Interface. PhD thesis, Department of Computer Science, University
of Wisconsin at Madison, 1998.

[18] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. Technical
report, University of Wisconsin-Madison Computer Science Department, 1997.

[19] J. Adam Butts and Guri Sohi. Dynamic Dead-Instruction Detection and Elimination.
In Proceedings of the 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS X), pages 199–210, San Jose,
CA, USA, October 2002.

[20] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. In
Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 139–150, San Jose, CA, October
1998.

[21] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of Integrated Prefetching and
Caching Strategies. In Proceedings of ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, pages 188–197, December 1995.

[22] Calin Cascaval and David A. Padua. Estimating cache misses and locality using
stack distances. In International Conference on Supercomputing, pages 150–159, San
Francisco, CA, USA, June 23-26 2003.

[23] J. P. Casmira and D. R. Kaeli. Modeling Cache Pollution. In Proceedings of the 2nd

IASTED Conference on Modeling and Simulation, pages 123–126, 1995.

[24] Yen-Jen Chang and Feipei Lai. Paged cache: An efficient partition architecture for
reducing power, area and access time. In Proceedings of IEEE Asia Pacific Conference
on Circuits and Systems, pages 473–478, Singapore, December 2002.

107

[25] Yen-Jen Chang, Feipei Lai, and Chanq-Jang Ruan. Cache design for eliminating
address translation bottleneck and reducing the tag area cost. In Proceedings of the
2002 IEEE International Conference on Computer Design: VLSI in Computers and
Processors (ICCD’02), pages 334–339, Freiburg, Germany, September 16-18 2002.

[26] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the
cache behavior of nested loops. In Proceedings of the SIGPLAN 2001 Conference on
Programming Language Design and Implementation, pages 286–297, Snowbird, UT,
June 2001.

[27] Chi F. Chen, Se-Hyun Yang, Babak Falsafi, and Andreas Moshovos. Accurate and
complexity-effective spatial pattern prediction. In 10th International Symposium on
High Performance Computer Architecture, pages 276–287, Madrid, Spain, February
14-18 2004.

[28] Tien-Fu Chen. An Effective Programmable Prefetch Engine for On-Chip Caches. In
Proceedings of the 28th Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 237–242, Ann Arbor, MI, November 1995.

[29] Tien-Fu Chen and Jean-Loup Baer. A performance study of software and hardware
data prefetching schemes. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 223–232, Chicago, IL, 1994.

[30] Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-based Data Prefetching for
High-Performance Processors. IEEE Transactions on Computers, 44(5):609–623, May
1995.

[31] Allen Cheng, Chen Ma, Pracheeti Nagarkar, and Hongtao Zhong. Direct addressed
scratchpad memories to reduce power consumption. EECS 583 Course Project, De-
partment of EECS, University of Michigan, Winter 2003.

[32] Trishul M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious structure defi-
nition. In Proceedings of the SIGPLAN 1999 Conference on Programming Language
Design and Implementation, pages 13–24, Atlanta, GA, May 1999.

[33] Trishul M. Chilimbi, Mark D. Hill, and J. R. Larus. Cache-conscious structure layout.
In Proceedings of the SIGPLAN 1999 Conference on Programming Language Design
and Implementation, pages 1–12, Atlanta, GA, May 1999.

[34] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, Berlin, Germany, June 17-19
2002.

[35] Trishul M. Chilimbi and J. R. Larus. Using generational garbage collection to imple-
ment cache-conscious data placement. In The International Symposium on Memory
Management, pages 37–48, Vancouver, BC, October 1998.

[36] D. Chiou, S. Devadas, P. Jain, and L. Rudolph. Application-Specific Memory Man-
agement for Embedded Systems Using Software-Controlled Caches. In Proceedings of
the 37th Design Automation Conference, June 2000.

108

[37] Jamison Collins and Deam M. Tullsen. Hardware identification of cache conflict
misses. In Proceedings of the 32nd Annual International Symposium on Microarchi-
tecture, pages 126–135, 1999.

[38] Jamison D. Collins and Dean M. Tullsen. Runtime identification of cache con-
flict misses: The adaptive miss buffer. ACM Transactions on Computer Systems,
19(4):413–439, November 2001.

[39] R. Cooksey and D. Grunwald. Characterization of the spec2000 benchmark suite,
2001.

[40] Cyrix. Cyrix 6X86MX Processor, May 1998.

[41] Cyrix. Cyrix MII Databook, Feb 1999.

[42] Marcos R. de Alba and David R. Kaeli. Path-based Hardware Loop Prediction.

[43] Marcos R. de Alba and David R. Kaeli. Characterization and Evaluation of Hardware
Loop Unrolling. April 17 2003.

[44] Pepijn de Langen and Ben Juurlink. Off-Chip Memory Traffic Measurements of Low-
Power Embedded Systems. In Proceedings of ProRISC Workshop on Circuits, Systems
and Signal Processing, pages 351–358, 2002.

[45] Yannick Deville. A process-dependent partitioning strategy for cache memories. ACM
SIGARCH Computer Architecture News, 21(1):26–33, March 1993.

[46] Ashutosh S. Dhodapkar and James E. Smith. Comparing Program Phase Detection
Techniques. In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 217–227, December 2003.

[47] Chen Ding and Ken Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. Journal of Parallel and Distributed Computing,
64(1):108–134, January 2004.

[48] Chen Ding and Yutao Zhong. Reuse distance analysis. Technical Report UR-CS-TR-
741, Computer Science Department, University of Rochester, Rochester, NY, Febru-
ary 2001.

[49] Chen Ding and Yutao Zhong. Predicting Whole-Program Locality through Reuse Dis-
tance Analysis. In Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, pages 245–257, San Diego, CA, USA,
June 9-11 2003.

[50] C. Dulong. IA-64 Architecture At Work. IEEE Computer, 31(7):24–32, July 1998.

[51] Harry Dwyer and John Fernando. Establishing a Tight Bound on Task Interference
in Embedded System Instruction Caches. In CASES ’01: Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 8–14, Atlanta, GA, November 16-17 2001.

[52] Changpeng Fang, Steve Carr, Soner Onder, and Zhenlin Wang. Reuse-distance-based
miss-rate prediction on a per instruction basis. In The Second ACM SIGPLAN Work-
shop on Memory System Performance, Washington, DC, June 8 2004.

109

[53] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Probabilistic miss equa-
tions: Evaluating memory hierarchy performance. IEEE Transactions on Computers,
52(3):321–336, March 2003.

[54] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 228–239, San Jose, CA, October 1998.

[55] E. H. Gornish and A. V. Veidenbaum. An integrated hardware/software scheme for
shared-memory multiprocessors. In Proceedings of the 1994 International Conference
on Parallel Processing, pages 281–284, St. Charles, IL, 1994.

[56] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In In IEEE 4th Annual Workshop on Workload Char-
acterization (WWC-4), December 2001.

[57] E. G. Hallnor and S. K. Reinhardt. A fully associative software-managed cache design.
In Proceedings of the 27th International Symposium on Computer Architecture, pages
107–116, Vancouver, Canada, June 2000.

[58] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 2nd edition, 1996.

[59] John L Henning. Spec CPU2000: Measuring CPU Performance in the New Millen-
nium. IEEE Computer, 33(7):28–35, July 2000.

[60] Mark D. Hill. A Case for Direct-mapped Caches. IEEE Computer, 21(12):25–40,
December 1988.

[61] Mark D. Hill. Evaluating Associativity in CPU Caches. IEEE Transactions on Com-
puters, 38(12):1612–1630, December 1989.

[62] Glenn Hinton, Dave Sager, Mike Upton, Darren Boggs, and Doug Carmean. The
Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, Q1 2001.

[63] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping in the Memory
Systems: Predicting and Optimizing Memory Behavior. In Proceedings of the 29th
Annual International Symposium on Computer Architecture, May 2002.

[64] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. Tcp: Tag correlat-
ing prefetchers. In Proceedings of the Ninth International Symposium on High-
Performance Computer Architecture, pages 317–326, Anaheim, CA, February 8-12
2003.

[65] Ravi Iyer. Cqos: A framework for enabling qos in shared caches of cmp platforms.
In International Conference on Supercomputing, pages 257–266, Saint-Malo, France,
June 26-July 1 2004.

[66] Prabhat Jain, Srinivas Devadas, Daniel Engels, and Larry Rudolph. Software-
assisted Cache Replacement Mechanisms for Embedded Systems. In Proceedings of

110

the IEEE/ACM International Conference on Computer-Aided Design, pages 119–126,
November 4-8 2001.

[67] Jaeheon Jeong and Michel Dubois. Optimal replacements in caches with two miss
costs. In Eleventh ACM Symposium on Parallel Algorithms and Architectures, pages
155–164, Saint Malo, France, June 27-30 1999.

[68] Jaeheon Jeong and Michel Dubois. Cost-sensitive cache replacement algorithms. In 9th
International Symposium on High Performance Computer Architecture, pages 327–
336, Anaheim, CA, February 8-12 2003.

[69] Song Jiang and Xiaodong Zhang. Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In Proceedings of the
2002 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 31–42, Marina Del Rey, CA, 2002.

[70] Teresa L. Johnson, Daniel A. Connors, Matthew C. Merten, and Wen mei W. Hwu.
Run-time cache bypassing. IEEE Transactions on Computers, 48(12):1338–1354, De-
cember 1999.

[71] Teresa L. Johnson and Wen mei W. Hwu. Run-time Adaptive Cache Hierarchy Man-
agement via Reference Analysis. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 315–326, June 1997.

[72] Teresa L. Johnson, M. C. Merten, and Wen mei W. Hwu. Run-time Spatial Locality
Detection and Optimization. In Proceedings of the 30th International Symposium on
Microarchitecture, pages 57–64, December 1997.

[73] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a
Small Full-Associative Cache and Prefetch Buffers. In The 17th Annual International
Symposium on Computer Architecture, pages 364–373, May 1990.

[74] Martin Kampe, Per Stenstrom, and Michel Dubois. Self-correcting lru replacement
policies. In Proceedings of the 1st Conference on Computing Frontiers, pages 181–191,
Ischia, Italy, 2004.

[75] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A Matrix-based Ap-
proach to Global Locality Optimization Problem. In Proceedings of the 1998 In-
ternational Conference on Parallel Architectures and Compilation Techniques, pages
306–313, October 1998.

[76] Gokul B. Kandiraju and Anand Sivasubramaniam. Characterizing the d-TLB Be-
havior of SPEC CPU2000 Benchmarks. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pages
129–139, June 2002.

[77] M. Karlsson, F. Dahlgren, and P. Sternstrom. A Prefetching Technique for Irregular
Accesses to Linked Data Structures. In Proceedings of the Sixth International Sym-
posium on High-Performance Computer Architecture, pages 206–217, January 2000.

111

[78] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: Exploiting
generational behavior to reduce cache leakage power. In Proceedings of the 28th An-
nual International Symposium on Computer Architecture, pages 240–251, Goteborg,
Sweden, June 2001.

[79] Baris M. Kazar, Joshua J. Yi, and David J. Lilja. A characterization of the output
value locality of the spec95, spec2000, and mediabench benchmark suites. Minnesota
supercomputing institute, University of Minnesota, Twin Cities, MN.

[80] R. Kessler. The Alpha 21264 Microprocessor: Out-Of-Order Execution at 600 Mhz.
In Hot Chips 10, August 1998.

[81] Richard E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36,
March-April 1999.

[82] H. Khalid and M. S. Obaidat. Kora-2: A new cache replacement policy and its
performance. In The 6th IEEE International Conference on Electronics, Circuits and
Systems, pages 265–269, Pafos, Cyprus, September 5-8 1999.

[83] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-uniform
Cache Structure for Wire-delay Dominated On-chip Caches. In Proceedings of the
10th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 211–222, October 2002.

[84] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M. J. Irwin, and
E. Geethanjali. Power-aware partitioned cache architectures. In Proceedings of the
2001 International Symposium on Low Power Electronics and Design (ISLPED’01),
pages 64–67, Huntington Beach, CA, August 6-7 2001.

[85] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and partition-
ing in a chip multiprocessor architecture. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT 2004), pages
111–122, Antibes Juan-les-Pins, France, September 29 - October 03 2004.

[86] Seongwoo Kim and Arun K. Somani. Characterization of an extended multime-
dia benchmark on a general purpose microprocessor architecture. Technical Report
DCNL-CA-2000-002, Electrical and Computer Engineering Department, Iowa State
University, 2000.

[87] Soontae Kim, N. Vijaykrishnan, Mahmut Kandemir, Anand Sivasubramaniam, and
Mary Jane Irwin. Partitioned instruction cache architecture for energy efficiency.
ACM Transactions on Embedded Computing Systems, 2(2):163–185, May 2003.

[88] Johnson Kin, Munish Gupta, and William H. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. In Proceedings of the International Symposium
on Microarchitecture, pages 184–193, December 1997.

[89] David B. Kirk. Process Dependent Cache Partitioning of Real-Time Systems. In
Proceedings of the IEEE Real Time Systems Symposium, pages 181–190, 1988.

[90] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith. Application-Driven
Synthesis of Core-Based Systems. In Proceedings of the International Conference on
Computer-Aided Design, pages 104–107, November 1997.

112

[91] A. C. Klaiber and H. M. Levy. An Architecture for Software-controlled Data Prefetch-
ing. SIGARCH Computer Architecture News, 19(3):43–53, May 1991.

[92] Sanjeev Kumar and C. Wilkerson. Exploiting spatial locality in data caches using
spatial footprints. In Proceedings of the 25th International Symposium on Computer
Architecture, pages 357–368, July 2001.

[93] An-Chow Lai and Babak Falsafi. Selective, Accurate, and Timely Self-invalidation
Using Last-touch Prediction. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, June 2000.

[94] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-Block Prediction & Dead-Block
Correlating Prefetchers. In Proceedings of the 28th Annual International Symposium
on Computer Architecture (to appear), July 2001.

[95] Jeremy Lau, Stefan Schoenmackers, and Brad Calder. Transition phase classifica-
tion and prediction. In Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, San Francisco, CA, February 12-16 2005.

[96] Alvin R. Lebeck and David A. Wood. Cache Profiling and the SPEC Benchmarks: A
Case Study. IEEE Computer, 27(10):15–26, October 1994.

[97] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Communication Systems.
In Proceedings of the International Symposium on Microarchitecture, pages 330–335,
1997.

[98] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU) policies. In Proceedings
of the international conference on Measurement and modeling of computer systems,
1999.

[99] Hsien-Hsin S. Lee and Gary S. Tyson. Region-Based Caching: An Enegry-Delay
Efficient Memory Architecture for Embedded Processors. In CASES ’00: Proceedings
of the 2000 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 120–127, San Jose, CA, November 17-18 2000.

[100] Lin Li, Ismail Kadayif, Yuh-Fang Tsai, N. Vijaykrishnan, Mahmut Kandemir,
Mary Jane Irwin, and Anand Sivasubramaniam. Managing Leakage Energy in Cache
Hierarchies. Journal of Instruction-Level Parallelism, 5, April 2003.

[101] Y. Li and W. Wolf. A Task-Level Hierarchical Memory Model for System Synthesis
of Multiprocessors. In Proceedings of the 34th Design Automation Conference, pages
153–156, June 1997.

[102] Zhiyuan Li. Reducing cache conflicts by partitioning and privatizing shared arrays.
In Proceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques (PACT’99), pages 183–190, Newport Beach, CA, October
12-16 1999.

113

[103] AJ KleinOsowski David J. Lilja. MinneSPEC: A New SPEC Benchmark Workload for
Simulation-based Computer Architecture Research. Computer Architecture Letters,
1, June 2002.

[104] Wei-Fen Lin, Steven K. Reinhardt, Doug Burger, and Thomas R. Puzak. Filtering
superfluous prefetches using density vectors. In International Conference on Computer
Design (ICCD ’01), pages 124–132, Austin, TX, September 23-26 2001.

[105] Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel, and Robert R. Roediger.
SPAID: Software Prefetching in Pointer- and Call-intensive Environments. In Proceed-
ings of the 28th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-28), pages 231–236, November 1995.

[106] C.-K. Luk and T. C. Mowry. Compiler-based Prefetching for Recursive Data Struc-
tures. ACM SIGOPS Operating Systems Review, 30(5):222–233, 1996.

[107] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P. Geoffrey Lowney, and
Robert Cohn. Profile-guided post-link stride prefetching. In ICS ’02: Proceedings
of the International Conference on Supercomputing, pages 167–178, New York, NY,
June 22-26 2002.

[108] Albert Ma, Michael Zhang, and Krste Asanovic. Way memoization to reduce fetch
energy in instruction caches. In Workshop on Complexity-Effective Design, 28th In-
ternational Symposium on Computer Architecture, Gothenburg, Sweden, June 2001.

[109] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart memories: A modular reconfigurable architecture. In Proceedings
of the 27th International Symposium on Computer Architecture, pages 161–171, Van-
couver, Canada, June 2000.

[110] N. Maki, K. Hoson, and A Ishida. A Data-Replace-Controlled Cache Memory System
and its Performance Evaluations. In TENCON 99. Proceedings of the IEEE Region
10 Conference, 1999.

[111] Mahesh Mamidipaka and Nikhil Dutt. On-chip Stack based Memory Organization for
Low Power Embedded Architectures. In Proceedings of the Design, Automation, and
Test in Europe Conference (DATE’03), pages 1082–1087, Munich, Germany, March
2003.

[112] C. May, E. Silha, R. Simpson, H. Warren, and editors. The PowerPC Architecture:
A Specification for a New Family of RISC Processors. Morgan Kaufmann Publishers,
Inc., 1994.

[113] S. McFarling. Program Optimization for Instruction Caches. In Proceedings of the 3rd

Int’l Conference on Architectural Support for Programming Languages and Operating
Systems, pages 183–191, April 1989.

[114] Sally A. McKee, A. Aluwihare, and et. al. Design and evaluation of dynamic access
reordering hardware. In International Conference on Supercomputing, pages 125–132,
May 1996.

[115] Sally A. McKee, R. H. Klenke, and et. al. Smarter Memory: Improving Bandwidth
for Streamed References. IEEE Computer, 31(7):54–63, July 1998.

114

[116] Abraham Mendelson, Dominique Thiebaut, and Dhiraj K. Pradhan. Modeling live
and dead lines in cache memory systems. IEEE Transactions on Computers, 42(1):1–
14, January 1993.

[117] Sun Microsystems. UltraSparc User’s Manual, July 1997.

[118] Tushar Mohan, Bronis R. de Supinski, Sally A. McKee, Frank Mueller, Andy Yoo,
and Martin Schulz. Identifying and exploiting spatial regularity in data memory
references. In Proceedings of the ACM/IEEE SC2003 Conference, pages 49–59, 2003.

[119] Csaba. A. Moritz, Matthew Frank, and Saman Amarasinghe. Flexcache: A framework
for compiler generated data caching. In Lecture Notes in Computer Science. Springer-
Verlag, 2001.

[120] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of a Com-
piler Algorithm for Prefetching. In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
V), pages 62–73, Boston, MA, October 1992.

[121] Todd C. Mowry and Chi-Keung Luk. Predicting data cache misses in non-numeric
applications through correlation profiling. In MICRO-30: Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 314–320,
Research Triangle Park, North Carolina, December 1-3 1997.

[122] Todd C. Mowry and Chi-Keung Luk. Understanding why correlation profiling im-
proves the predictability of data cache misses in nonnumeric applications. IEEE
Transactions on Computers, 49(4):369–384, April 2000.

[123] Frank Mueller. Compiler support for software-based cache partitioning. ACM SIG-
PLAN Notices, 30(11):125–133, November 1995.

[124] George Murillo, Scott Noel, Joshua Robinson, and Paul Willmann. Enhancing Data
Cache Performance via Dynamic Allocation. In Project Report, Rice University, Hous-
ton, TX, Spring 2003.

[125] Dan Nicolaescu, Alex Veidenbaum, and Alex Nicolau. Reducing Power Consumption
for High-Associativity Data Caches in Embedded Processors. In Proceedings of the
Design, Automation, and Test in Europe Conference (DATE’03), pages 1064–1068,
Munich, Germany, March 2003.

[126] Mohammad S. Obaidat and Humayun Khalid. Estimating neural networks-based
algorithm for adaptive cache replacement. IEEE Transactions on Systems, Man, and
Cybernetics–Part B: Cybernetics, 28(4):602–611, August 1998.

[127] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. An optimality proof
of the lru-k page replacement algorithm. Journal of the ACM, 46(1):92–112, January
1999.

[128] Toshihiro Ozawa, Yasunori Kimura, and Shin’ichiro Nishizaki. Cache Miss Heuris-
tics and Preloading Techniques for General-purpose Programs. In Proceedings of the
28th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
28), November 1995.

115

[129] Subbarao Palacharla and R.E. Kessler. Evaluating Stream Buffers as a Secondary
Cache Replacement. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 24–33, April 1994.

[130] Krishna V. Palem and Rodric M. Rabbah. Bridging processor and memory perfor-
mance in ilp processors via data-remapping. Technical Report CREST-TR-01-002,
GIT-CC-01-014, Georgia Institute of Technology, Center for Research on Embedded
Systems and Technology, June 2001.

[131] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-on-Chip:
Optimizations and Exploration. Kluwer Academic Publishers, 1999.

[132] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed
Prefetching and Caching. In Proceedings of 15th Symposium on Operating System
Principles, pages 79–95, December 1995.

[133] Jih-Kwon Peir, Yongjoon Lee, and Windsor W. Hsu. Capturing Dynamic Memory
Reference Behavior with Adaptive Cache Topology. In Proceedings of the 8th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VIII), pages 240–250, October 1998.

[134] Peter Petrov and Alex Orailoglu. Performance and power effectiveness in embedded
processors - customizable partitioned caches. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(11):1309–1318, November 2001.

[135] Peter Petrov and Alex Orailoglu. Towards effective embedded processors in codesigns:
Customizable partitioned caches. In Proceedings of the Ninth International Sympo-
sium on Hardware/Software Codesign, pages 79–84, Copenhagen, Denmark, 2001.

[136] Venkata K. Pingali, Sally A. McKee, Wilson C. Hseih, and John B. Carter. Com-
putation regrouping: Restructuring programs for temporal data cache locality. In
International Conference on Supercomputing, pages 252–261, New York, NY, USA,
June 22-26 2002.

[137] Gilles Pokam and Francois Bodin. Energy-efficiency Potential of a Phase-based Cache
Resizing Scheme for Embedded Systems. In Proceedings of the 8th IEEE Annual
Workshop on Interaction between Compilers and Architectures (INTERACT-8), pages
53–62, Madrid, Spain, February 2004.

[138] M. Prvulovic, Darko Marinov, Z. Dimitrijevic, and V. Milutinovic. The split
spatial/non-spatial cache: A performance and complexity evaluation. In IEEE TCCA
Newsletters, pages 8–17, July 1999.

[139] S. Przybylski. The Performance Impact of Block Sizes and Fetch Strategies. In
Proceedings of the 17th International Symposium on Computer Architecture, pages
160–169, Seattle, WA, 1990.

[140] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The v-way cache: De-
mand based associativity via global replacement. In ISCA ’05: Proceedings of the 32nd
Annual International Symposium on Computer Architecture, Madison, WI, June 2005.

116

[141] Rodric M. Rabbah, Krishna V. Palem, Vincent J. Mooney III, Pinar Korkmaz, and
Kiran Puttaswamy. Design space optimization of embedded memory systems via data
remapping. In Proceedings of the Joint Conference on Languages, Compilers and Tools
for Embedded Systems: Software and Compilers for Embedded Systems, pages 28–37,
Berlin, Germany, 2002.

[142] Paul Racunas and Yale N. Patt. Partitioned First-Level Cache Design for Clustered
Microarchitectures. In ICS ’03: Proceedings of the International Conference on Su-
percomputing, pages 22–31, San Francisco, CA, June 23-26 2003.

[143] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi. Reconfigurable
caches and their application to media processing. In ISCA ’00: Proceedings of the
27th Annual International Symposium on Computer Architecture, pages 214–224, Van-
couver, Canada, June 2000.

[144] Pipat Reungsang, Sun Kyu Park, Seh-Woong Jeong, Hyung-Lae Roh, and Gyungho
Lee. Reducing Cache Pollution of Prefetching in a Small Data Cache. In International
Conference on Computer Design, pages 530–533, Austin, TX, 2001.

[145] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M. Farrens. Utilizing
Reuse Information in Data Cache Management. In Proceedings of the International
Conference on Supercomputing (ICS), pages 449–456, July 1998.

[146] Julio Sahuquillo and Ana Pont. The filter cache: A run-time cache management
approach. In 25th Euromicro Conference (EUROMICRO ’99), pages 424–431, 1999.

[147] Suleyman Sair and Mark Charney. Memory behavior of the spec2000 benchmark suite.
Technical Report RC-21852, IBM T. J. Watson Research Center, October 2000.

[148] Suleyman Sair, Timothy Sherwood, and Brad Calder. Quantifying load stream be-
havior. In Proceedings of the Eighth International Symposium on High-Performance
Computer Architecture, pages 197–208, La Jolla, CA, USA, February 2-6 2002.

[149] F.J. Sánchez, A. González, and M. Valero. Software Management of Selective and
Dual Data Caches. In IEEE Computer Society Technical Committee on Computer
Architecture: Special Issue on Distributed Shared Memory and Related Issues, pages
3–10, March 1997.

[150] Jesus Sanchez and Antonio Gonzalez. A Locality Sensitive Multi-Module Cache with
Explicit Management. In Proceedings of the 1999 International Conference on Super-
comupting, pages 51–59, June 1999.

[151] Vatsa Santhanam, Edward H. Gornish, and Wei-Chung Hsu. Data Prefetching on
the HP PA-8000. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 264–273, Denver, CO, June 1997.

[152] Jennifer B. Sartor, Subramaniam Venkiteswaran, Kathryn S. McKinley, and Zhenlin
Wang. Cooperative caching with keep-me and evict-me. In 9th Annual Workshop
on Interaction between Compiler and Computer Architectures (INTERACT-9), pages
46–57, February 13-15 2005.

117

[153] John E. Sasinowski and Jay K. Strosnider. A dynamic programming algorithm for
cache/memory partitioning for real-time systems. IEEE Transactions on Computers,
42(8):997–1001, August 1993.

[154] Ashley Saulsbury, Su-Jaen Huang, and Fredrik Dahlgren. Efficient management of
memory hierarchies in embedded dram systems. In ICS ’99: Proceedings of the Inter-
national Conference on Supercomputing, pages 464–473, Rhodes, Greece, June 20-25
1999.

[155] Assia Djabelkhir Andre Seznec. Characterization of Embedded Applications for De-
coupled Processor Architecture. In Proceedings of the IEEE 6th Annual Workshop on
Workload Characterization, Austin, TX, October 2003.

[156] Sharif M. Shahrier and Jyh-Charn Liu. On predictability and optimization of multi-
programmed caches for real-time applications. pages 17–25, 1997.

[157] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality Phase Prediction. In Proceed-
ings of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XI), pages 165–176, Boston, MA, USA,
October 7-13 2004.

[158] Xipeng Shen, Yutao Zhong, and Chen Ding. Phase-based miss rate prediction across
program inputs. In The 17th International Workshop on Languages and Compilers
for Parallel Computing, West Lafayette, IN, September 2004.

[159] Timothy Sherwood, Brad Calder, and Joel Emer. Reducing Cache Misses Using Hard-
ware and Software Page Placement. In Proceedings of the International Conference
on Supercomputing, Rhodes, Greece, June 1999.

[160] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. In 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
X), October 2002.

[161] Wen-Tsong Shiue and Chaitali Chakrabarti. Memory Design and Exploration for Low
Power, Embedded Systems. Journal of VLSI Signal Processing - Systems for Signal,
Image, and Video Technology, 2001.

[162] Jan Sjodin, Bo Froderberg, and Thomas Lindgren. Allocation of Global Objects in
On-Chip RAM. In Workshop on Compiler and Architecture Support for Embedded
Computing Systems, Washington, DC, USA, December 4-5 1998.

[163] P. Slock, S. Wuytack, F. Catthoor, and G. de Jong. Fast and Extensive System-Level
Memory Exploration and ATM Applications. In Proceedings of 1995 International
Symposium on System Synthesis, pages 74–81, 1997.

[164] Y. Smaragdakis, S. Kaplan, and P. Wilson. Eelru: Simple and effective adaptive page
replacement. In Proceedings of the 1999 ACM Sigmetrics Conference on Measure-
ments and Modeling of Computer Systems, pages 122–133, May 1999.

[165] A. J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473–530, September
1982.

118

[166] Sohum Sohoni, Zhiyong Xu, Rui Min, and Timing Hu. A Study of Memory System
Performance of Multimedia Applications. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pages
206–215, Cambridge, MA, June 16-20 2001.

[167] Harold S. Stone, Jhon Turek, and Joel L. Wolf. Optimal partitioning of cache memory.
IEEE Transactions on Computers, 41(9):1054–1068, September 1992.

[168] Rabin A. Sugumar and Santosh G. Abraham. Efficient Simulation of Caches under
Optimal Replacement with Applications to Miss Characterization. In Proceedings of
the 1993 ACM Sigmetrics Conference on Measurements and Modeling of Computer
Systems, pages 24–35, May 1993.

[169] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, Jason R. Villarreal, and Greg Stitt.
Profiling Tools for Hardware/Software Partitioning of Embedded Applications. In
Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’03), pages 189–198, San Diego, CA, June 11-13
2003.

[170] Edward S. Tam, Jude A. Rivers, Vijayalakshmi Srinivasan, Gary S. Tyson, and Ed-
ward S. Davidson. UltraSparc User’s Manual. IEEE Transactions on Computers,
48(11):1244–1259, November 1999.

[171] Olivier Temam. An Algorithm for Optimally Exploiting Spatial and Temporal Lo-
cality in Upper Memory Levels. IEEE Transactions on Computers, 48(2):150–158,
February 1999.

[172] Dominique Thiebaut and Harold S. Stone. Footprints in the cache. ACM Transactions
on Computer Systems, 5(4):305–329, November 1987.

[173] Dominique Thiebaut, Harold S. Stone, and Joel L. Wolf. Improving disk cache hit-
ratios through cache partitioning. IEEE Transactions on Computers, 41(6):665–676,
June 1992.

[174] H. Tomiyama and H. Yasuura. Code Placement Techniques for Cache Miss Rate Re-
duction. ACM Transactions on Design Automation of Electronic Systems, 2(4):410–
429, October 1997.

[175] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun. A Modified
Approach to Data Cache Management. In Proceedings of the 28th Annual Interna-
tional Symposium on Microarchitecture Ann Arbor, MI, November/December 1995.

[176] Sumesh Udayakumaran and Rajeev Barua. Compiler-Decided Dynamic Memory Al-
location for Scratch-Pad Based Embedded Systems. In CASES ’03: Proceedings of
the 2003 International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems, pages 276–286, San Jose, CA, October 30 - November 2 2003.

[177] O. Unsal, Z. Wang, I. Koren, C. Krishna, and C. Moritz. On memory behavior of
scalars in embedded multimedia systems, 2001.

[178] Osman S. Unsal, R. Ashok, Israel Koren, C. Mani Krishna, and Csaba Andras Moritz.
Cool-cache for hot multimedia. In Proceedings of the 34th International Symposium
on Microarchitecture, pages 274–283, December 2001.

119

[179] Osman S. Unsal, R. Ashok, Israel Koren, C. Mani Krishna, and Csaba Andras Moritz.
Cool-cache: A Compiler-enabled Energy Efficient Data Caching Framework for Em-
bedded and Multimedia Systems. ACM Transactions on Embedded Computing Sys-
tems, Special Issue on Low Power, 2(3):373–392, August 2003.

[180] Osman S. Unsal, Israel Koren, C. Mani Krishna, and Csaba Andras Moritz. The
minimax cache: An energy-efficient framework for media processors. In HPCA, pages
131–140, 2002.

[181] Steven P. Vanderwiel and David J. Lilja. When caches aren’t enough: Data prefetching
techniques. IEEE Computer, pages 23–30, July 1997.

[182] Steven P. VanderWiel and David J. Lilja. A compiler-assisted data prefetch controller.
In International Conference on Computer Design (ICCD ’99), pages 372–377, Austin,
TX, October 10-13 1999.

[183] Steven P. Vanderwiel and David J. Lilja. Data Prefetch Mechanisms. ACM Computing
Surveys, 32(2):174–199, June 2000.

[184] Alexander V. Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and Xi-
aomei Ji. Adapting Cache Line Size to Application Behavior. In International Con-
ference on Supercomputing, June 1999.

[185] Xavier Vera, Bjorn Lisper, and Jingling Xue. Data cache locking for higher pro-
gram predictability. In Proceedings of the 2003 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 272–282, 2003.

[186] Xavier Vera and Jingling Xue. Efficient compile-time analysis of cache behavior for
programs with if statements. In Fifth International Conference on Algorithms and
Architectures for Parallel Processing, pages 396–407, Beijing, China, October 23-25
2002.

[187] Kugan Vivekanandarajah, Thambipillai Srikanthan, Christopher Clarke, and Saurav
Bhattacharya. Static Pattern Predictor (SPP) Based Low Power Instruction Cache
Design. In Embedded Systems and Applications, pages 210–215, 2003.

[188] Udo Walterscheidt and Ravi Pendse. Dynamical adjustment of block replacement
algorithms. In Proceedings of the 30th Southeastern Symposium on System Theory,
pages 544–548, Morgantown, WV, March 8-10 1998.

[189] Zhenlin Wang, Doug Burger, Steven K. Reinhardt, Kathryn S. McKinley, and
Charles C. Weems. Guided region prefetching: A cooperative hardware/software
approach. In The 30th Annual International Symposium on Computer Architecture,
pages 388–398, San Diego, CA, June 2003.

[190] Zhenlin Wang, Kathryn S. McKinley, and Doug Burger. Combining cooperative soft-
ware/hardware prefetching and cache replacement. In IBM Austin CAS Center for
Advanced Studies Conference, Austin, TX, February 2004.

[191] Zhenlin Wang, Kathryn S. McKinley, Arnold L. Rosenberg, and Charles C. Weems.
Using the Compiler to Improve Cache Replacement Decisions. In Proceedings of the
2002 International Conference on Parallel Architectures and Compilation Techniques
(PACT’02), September 2002.

120

[192] Zhong Wang, Michael Kirkpatrick, and Edwin Hsing-Mean Sha. Optimal two level
partitioning and loop scheduling for hiding memory latency for dsp applications. In
Design Automation Conference, pages 540–545, Los Angeles, CA, June 2000.

[193] Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whalley, and
Marion G. Harmon. Timing analysis for data caches and set associative caches. In
3rd IEEE Real-Time Technology and Applications Symposium (RTAS ’97), pages 192–
202, Montreal, Canada, June 9-11 1997.

[194] E. Witchel, S. Larsen, C. S. Ananian, and K. Asanovic. Energy efficient architectures:
Direct addressed caches for reduced power consumption. In Proceedings of the 34th
International Symposium on Microarchitecture, pages 124–133, December 2001.

[195] Emmett Witchel and Krste Asanovic. The span cache: Software controlled tag checks
and cache line size. In Workshop on Complexity-Effective Design, 28th International
Symposium on Computer Architecture, Gothenburg, Sweden, June 2001.

[196] Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste Asanovic. Direct ad-
dressed caches for reduced power consumption. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO-34), pages 124–
133, Austin, TX, December 2001.

[197] W. A. Wong and J.-L Baer. Modified LRU policies for improving second-level cache
behavior. In Proceedings of the Sixth International Symposium on High-Performance
Computer Architecture, 1999.

[198] Zhiyong Xu, Sohum Sohoni, Rui Min, and Timing Hu. An Analysis of Cache Perfor-
mance of Multimedia Applications. IEEE Transactions on Computers, 53(1):20–38,
January 2004.

[199] Jun Yang, Jia Yu, and Youtao Zhang. Lightweight Set Buffer: Low Power Data Cache
for Multimedia Application. In ISLPED, pages 270–273, Seoul, Korea, August 25-27
2003.

[200] Se-Hyun Yang, Michael D. Powell, Babak Falsafi, and T. N. Vijaykumar. Exploiting
choice in resizable cache design to optimize deep-submicron processor energy-delay. In
Proceedings of the Eighth International Symposium on High-Performance Computer
Architecture, pages 151–161, La Jolla, CA, USA, February 2-6 2002.

[201] Kenneth C. Yeager. The mips r10000 superscalar microprocessor. IEEE Micro,
16(2):28–40, April 1996.

[202] Joshua J Yi, Resit Sendag, and David J Lilja. The spatial characteristics of load
instructions. Laboratory for Advanced Research in Computing Technology and Com-
pilers ARCTiC 02-10, University of Minnesota, Twin Cities, MN, October 2002.

[203] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A Highly Configurable Cache
Architecture for Embedded Systems. In ISCA ’03: Proceedings of the 30th Annual
International Symposium on Computer Architecture, pages 136–146, San Diego, CA,
2003.

121

[204] Michael Zhang and Krste Asanovic. Highly-associative caches for low-power proces-
sors. In Kool Chips Workshop, 33rd International Symposium on Microarchitecture,
Monterey, CA, December 2000.

[205] Michael Zhang and Krste Asanovic. Fine-grain cam-tag cache resizing using miss tags.
In Proceedings of the 2002 International Symposium on Low Power Electronics and
Design (ISLPED’02), Mnoterey, CA, August 12-14 2002.

[206] W. Zhang, M. Karakoy, M. Kandemir, and G. Chen. A Compiler Approach for
Reducing Data Cache Energy. In ICS ’03: Proceedings of the International Conference
on Supercomputing, pages 76–85, San Francisco, CA, June 23-26 2003.

[207] Youtao Zhang and Jun Yang. Low Cost Instruction Cache Designs for Tag Comparison
Elimination. In ISLPED, Seoul, Korea, August 25-27 2003.

[208] Yutao Zhong, Steven G. Dropsho, and Chen Ding. Miss Rate Prediction across All
Program Inputs. In Proceedings of the 2003 International Conference on Parallel
Architectures and Compilation Techniques (PACT’03), pages 79–90, September 27-
October 1 2003.

[209] Huiyang Zhou and Thomas M. Conte. Enhancing Memory Level Parallelism via
Recovery-Free Value Prediction. In ICS ’03: Proceedings of the International Confer-
ence on Supercomputing, pages 326–335, San Francisco, CA, June 23-26 2003.

122

