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Abstract

Embedded systems are increasingly using on-chip caches as part of their on-chip memory
system. This thesis presents cache mechanisms to improve cache performance and pro-
vide opportunities to improve data availability that can lead to more predictable cache
performance.

The first cache mechanism presented is an intelligent cache replacement policy that uti-
lizes information about dead data and data that is very frequently used. This mechanism is
analyzed theoretically to show that the number of misses using intelligent cache replacement
is guaranteed to be no more than the number of misses using traditional LRU replacement.
Hardware and software-assisted mechanisms to implement intelligent cache replacement are
presented and evaluated.

The second cache mechanism presented is that of cache partitioning which exploits
disjoint access sequences that do not overlap in the memory space. A theoretical result is
proven that shows that modifying an access sequence into a concatenation of disjoint access
sequences is guaranteed to improve the cache hit rate. Partitioning mechanisms inspired
by the concept of disjoint sequences are designed and evaluated.

A profile-based analysis, annotation, and simulation framework has been implemented
to evaluate the cache mechanisms. This framework takes a compiled benchmark program
and a set of program inputs and evaluates various cache mechanisms to provide a range of
possible performance improvement scenarios. The proposed cache mechanisms have been
evaluated using this framework by measuring cache miss rates and Instructions Per Clock
(IPC) information. The results show that the proposed cache mechanisms show promise in
improving cache performance and predictability with a modest increase in silicon area.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

There has been tremendous growth in the electronics and the computing industry in recent

years fueled by the advances in semiconductor technology. Electronic computing systems are

used in diverse areas and support a tremendous range of functionality. These systems can be

categorized into general-purpose systems or application-specific systems. The application-

specific systems are also called embedded systems. General-purpose systems (e.g., desktop

computers) are designed to support many different application domains. On the other hand,

most embedded systems are typically designed for a single application domain. Embedded

systems are used in consumer electronics products such as cellular phones, personal digital

assistants, and multimedia systems. In addition, embedded systems are used in many other

fields such as automotive industry, medical sensors and equipment, and business equipment.

Embedded systems are customized to an application domain to meet performance, power,

and cost requirements. This customization feature makes the embedded systems popular

as evidenced by their use in a wide range of fields and applications.

Current submicron semiconductor technology allows for the integration of millions of

gates on a single chip. As a result, different components of a general-purpose or an embed-

ded system can be integrated onto a single chip. The integration of components on a single

chip offers the potential for improved performance, lower power, and reduced cost. However,

the ability to integrate more functionality onto a chip results in increased design complex-

ity. Most embedded systems use both programmable components, Field Programmable

Logic, and application-specific integrated circuit (ASIC) logic. The programmable compo-
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nents are called embedded processors. These embedded processors can be general-purpose

microprocessors, off-the-shelf digital signal processors (DSPs), in-house application specific

instruction-set processors (ASIPs), or micro-controllers. Typically, the time-critical func-

tionality is implemented as an ASIC and the remaining functionality is implemented in

software which runs on the embedded processor. Figure 1-1 illustrates a typical embedded

system, consisting of a processor, DSP, or an ASIP, a program ROM or instruction cache,

data cache, SRAM, application-specific circuitry (ASIC), peripheral circuitry, and off-chip

DRAM memory.

The ASIC logic typically provides (predictably) high performance for the time-critical

functionality in an embedded system. But, design cycles for ASIC logic can be long and

design errors may require a new chip to correct the problem. On the other hand, software

implementations can accommodate late changes in the requirements or design, thus reducing

the length of the design cycle. Software programmability can also help in the evolution of

a product – simply changing the software may be enough to augment the functionality for

the next generation of a product. Due to the need for short design cycles and the flexibility

offered by software, it is desirable that an increasing amount of an embedded system’s

functionality be implemented in software relative to hardware, provided the software can

meet the desired level of performance and predictability goals.

The software that runs on the embedded processor is supported by on-chip data mem-

ory which may be used as a cache and/or scratch-pad SRAM. The goal of this thesis is to

bring the performance and predictability of software closer to that offered by an ASIC in

an embedded system. This is achieved by focusing on the on-chip memory component of

the embedded system. I will describe various problems with embedded memory systems in

the following sections. In this thesis, I target performance and predictability improvement

of on-chip cache memory through the development of a range of cache mechanisms. I devel-

oped these mechanisms based on theoretical results so that these mechanisms can offer some

performance guarantees or have some properties relevant to performance and predictability.

Some of these mechanisms make use of application-specific information obtained from ap-

plication traces and incorporate that information in the form of additional instructions or

hints in the executable. The mechanisms are explored in the context of embedded systems

but are also applicable to general-purpose systems.
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Figure 1-1: Embedded System and On-chip Memory

1.2 Embedded Memory Systems

In many embedded systems, simple pipelined processors (e.g., ARM9TDMI [1]) are used

along with on-chip memory. The on-chip static memory, in the form of a cache or an SRAM

(scratch-pad memory) or some combination of the two, is used to provide an interface be-

tween hardware and software and to improve embedded system performance. Most systems

have both on-chip cache and SRAM since each addresses a different need. The components

of an on-chip memory in an embedded system are shown in Figure 1-1. The effective uti-

lization of the caches and on-chip SRAMs can lead to significant performance improvement

for embedded systems.

Typically, the processor and on-chip memory are used as decoupled components. The

only communication between the processor and the on-chip memory is through load/store

operations. The on-chip memory serves as data storage for the processor and data is read

from or written to an address provided by the processor. On-chip memory when used as a

cache serves as transparent storage between the processor and the off-chip memory since it is

accessed through the same address space as the off-chip memory. The processor read/write

requests are served from the on-chip cache provided the data is in the cache, otherwise data

is brought into the cache from the off-chip memory. The hardware management logic handles
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data movement and some other functions to maintain transparency. On-chip memory when

used as an SRAM does not have any hardware management logic and the data movement

is controlled through software.

Typically, on-chip memory simply responds to the access requests by the processor. The

processor does not communicate any application-specific information to the on-chip memory.

There is little or no software control or assistance to the hardware logic to manage the cache

resources effectively.

I consider the on-chip memory to be intelligent, if there is some hardware logic associated

with the on-chip memory either to manage the data storage or to perform some computation.

So, an on-chip associative cache has some intelligence, for example, to make replacement

decisions, and the on-chip SRAM is not intelligent. For embedded systems, the capability

(intelligence) of the on-chip caches can be enhanced by cache mechanisms that use some

application-specific information. There are several problems associated with the use of

caches and SRAM when they are used as on-chip memory for an embedded system. My

primary focus in this thesis is on the development of a range of cache mechanisms for on-

chip cache memory that address these problems. The specific problems addressed in this

thesis are described in the next section.

1.3 Thesis Research Problems

In this thesis I focus on the following aspects of the on-chip caches.

1.3.1 Cache Performance

Caches are used to improve the average performance of application-specific and general-

purpose processors. Caches vary in their organization, size and architecture. Depending

on the cache characteristics, application performance may vary dramatically. Caches are

valuable resources that have to be managed properly in order to ensure the best possible

program performance. For example, cache line replacement decisions are made by the hard-

ware replacement logic using a cache replacement strategy. In associative caches, commonly

used replacement strategies are the Least Recently Used (LRU) replacement strategy and

its cheaper approximations, where the cache line that is judged least recently used is evicted.

It is known, however, that LRU does not perform well in many situations, such as streaming

16



applications and timeshared systems where multiple processes use the same cache.

The cache performance directly affects the processor performance even in superscalar

processors where the latency of a cache miss can be hidden by scheduling other ready-

to-execute processor instructions. Current caches in embedded systems and most general-

purpose processors are largely passive and reactive in terms of their response to the access

requests. Moreover, current caches do not use application-specific information in managing

their resources. and there is relatively little software control or assistance with hardware

support to manage the cache resources effectively. As a result the caches may not perform

well for some applications.

The performance of a cache can be measured in terms of its hit or miss rate. A miss in

a cache can be either a cold miss, a conflict miss, or a capacity miss. Conflict and capacity

misses can sometimes be avoided using different data mapping techniques or increasing the

associativity of the cache. Cold misses can be avoided using prefetching, i.e., predicting

that the processor will make a request for a data block, and bringing the data in before

it is accessed by the processor. There have been numerous approaches proposed in the

past decades to improve cache performance. Though my approach in this thesis draws

on previous work, I have attempted to develop mechanisms with some theoretical basis to

provide performance guarantees.

1.3.2 Cache Predictability

Caches are transparent to software since they are accessed through the same address space

as the larger backing store. They often improve overall software performance but can be un-

predictable. Although the cache replacement hardware is known, predicting its performance

depends on accurately predicting past and future reference patterns.

One important aspect to cache design is the choice of associativity and the replace-

ment strategy, which controls which cache line to evict from the cache when a new line is

brought in. LRU does not perform well in many situations, including timeshared systems

where multiple processes use the same cache and when there is streaming data in appli-

cations. Additionally, the LRU policy often performs poorly for applications in which the

cache memory requirements and memory access patterns change during execution. Most

cache replacement policies, including LRU, do not provide mechanisms to increase pre-

dictability (worst-case performance), making them unsuited for many real-time embedded
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system applications. The predictability of cache performance can be enhanced by allowing

for more control over replacement decisions or by separating data accesses with different

characteristics in the cache as described later in the thesis.

1.3.3 Cache Pollution with Prefetching

One performance improvement technique for caches is data prefetching where data likely to

be used in the near future is brought into the cache before its use. So, when the prefetched

data is accessed, it results in a hit in the cache. Prefetching methods come in many different

flavors, and to be effective they must be implemented in such a way that they are timely,

useful, and introduce little overhead [123]. But, prefetching can lead to cache pollution

because a prematurely prefetched block can displace data in the cache that is in use or will

be used in the near future by the processor [15]. Cache pollution can become significant, and

cause severe performance degradation when the prefetching method used is too aggressive,

i.e., too much data is brought into the cache, or too little of the data brought into the

cache is useful. It has been noted that hardware-based prefetching often generates more

unnecessary prefetches than software prefetching [123]. Many different hardware-based

prefetch methods have been proposed; the simple schemes usually generate a large number

of prefetches, and the more complex schemes usually require hardware tables of large sizes.

The cache pollution caused by a prefetching method can be mitigated by combining the

prefetch method with a replacement policy. Such a combination can reduce cache pollution

by effectively controlling the prefetch method and the treatment of the prefetched data in

the cache.

1.4 Relationship to Previous Research on Caches

Caches have been a focus of research for a long time. For reference, Belady’s optimal

replacement algorithm was presented in 1966 [5] and since then there has been a lot of

research effort focussed on improving cache performance using a variety of techniques. As a

result, there is a great deal of work on various aspects of caches and there is a huge number

of results in the cache research literature. Sometimes, it is hard to compare the results

either due to a very specific nature of the work or the difficulty to reproduce the results in

one framework for comparison. Now I briefly describe how the thesis work relates to prior
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work in caches. A detailed description of related work is given in Chapter 7.

Cache performance problems have been addressed from different perspectives (e.g.,

cache architectures [55, 118, 129, 134], locality optimization [30, 48, 76, 78], cache man-

agement [46, 53, 86, 112, 116], replacement policies [7, 44, 45, 50, 107, 128, 132]). The

intelligent replacement mechanism I developed, as described in Chapter 3, can be viewed

as touching the above mentioned perspectives of prior cache research work. Unlike most

previous approaches, it offers a lower bound on performance. There are many prefetching

methods proposed in the cache literature (e.g., hardware prefetching [18, 91, 108], software

prefetching [68, 69, 79, 82, 102], prefetching with other mechanisms [13, 39, 64, 85], and

other prefetching approaches [3, 52, 70, 126]). Since prefetching is largely based on pre-

diction and timing, a prefetching method may work for one application and not work for

another application. My work has not resulted in new prefetch methods – I have instead

focussed on mitigating cache pollution effects caused by aggressive prefetch methods [43],

while offering theoretical guarantees. The cache partitioning approaches proposed in the

past focus on different aspects of the caches (e.g., performance [23, 80, 87, 94, 98, 100], low

power or energy [56, 58, 81, 136], predictability [59, 104]). The cache partitioning mech-

anisms I developed, as described in Chapter 5, are based on some theoretical results that

can provide guarantees of improved behavior.

There have been many mechanisms proposed with no theoretical basis or performance

guarantees. We think that theoretical results are important because a theoretical basis for

mechanisms can provide a framework to reason about the properties of different mechanisms,

separate from benchmark applications. Empirical evaluation of caches based on benchmarks

suffers from the problem that results can rarely be generalized to different cache sizes or

organizations. So, the focus of this thesis is on a search for theoretical results that can

guide the development of suitable mechanisms to solve the on-chip cache problems. The

contributions of the thesis in this regard are presented below.

1.5 Thesis Contributions

The main contributions of the thesis are the theoretical results for the proposed mechanisms.

A range of cache mechanisms are possible based on these theoretical results. A subset of

the possible cache mechanisms is designed, implemented in the Simplescalar [11] simulator,
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and evaluated to validate the theoretical results. The experiments also show the efficacy

of the proposed cache mechanisms to address the cache performance, predictability, and

pollution problems outlined in the previous section.

I considered two categories of cache mechanisms to address the problems outlined in the

previous section. These mechanisms use a small amount of additional hardware support

logic with software assistance in the form of hints or control instructions. The combination

of software/hardware support leads to better data management capability of the on-chip

data cache. The specific contributions with regard to these cache mechanisms are described

below.

1.5.1 Intelligent Cache Replacement

I introduced the notion of a kill-bit and keep-bit which are stored as part of the additional

cache state. In short, the kill bit is used to mark data that is no longer beneficial to keep

in the cache, whereas the keep bit is used to mark data that is still useful and desired to be

kept in the cache. I used the kill-bit state information along with the LRU information to

derive a replacement policy called Kill+LRU with several possible variations. In addition, I

used the kill-bit state and the keep-bit state information along with the LRU information to

derive a replacement policy called Kill+Keep+LRU with several possible variations. In or-

der to address the cache pollution caused by an aggressive hardware prefetch scheme, I used

the Kill+LRU replacement policy to derive Kill+Prefetch+LRU replacement policy. The

LRU cache replacement policy is augmented with the additional cache state bits to make re-

placement decisions. We refer to the the replacement policies Kill+LRU, Kill+Keep+LRU,

Kill+Prefetch+LRU, and their variations as intelligent cache replacement policies. There

are several ways to provide hardware/software support to set the additional state informa-

tion for the intelligent cache replacement policies described above. I consider some of the

hardware and software-assisted mechanisms. In this context, the additional contributions

are:

• Theoretical Results: I derived conditions and proved theorems based on these con-

ditions which would guarantee that the number of misses in the Kill+LRU cache re-

placement policy is no more than the LRU replacement policy for the fully-associative

and set-associative caches. I proved similar theorems for the case where an additional
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keep state information is combined with the Kill+LRU replacement policy, i.e., for

the Kill+Keep+LRU replacement policy. Some additional theoretical results are de-

rived when prefetching is combined with the Kill+LRU replacement policy, i.e., for the

Kill+Prefetch+LRU replacement policy, which show that the integration of Kill+LRU

replacement policy and prefetching results in more predictable cache performance by

controlling cache pollution.

• Hardware Mechanisms: I have designed some hardware mechanisms to approxi-

mate the conditions to set the kill-bit and other state information to provide support

for the intelligent replacement policies described above. In particular, I designed the

hardware mechanisms based on history signature functions. I also designed a hard-

ware mechanism to measure reuse distance which can be used to further enhance the

Kill+LRU replacement policy. The hardware mechanisms were implemented in the

Simplescalar [11] simulator.

• Software-assisted Mechanisms: I also designed some software-assisted mecha-

nisms where an offline analysis is done to determine the conditions appropriate for

the chosen intelligent replacement policy. This application-specific information is in-

corporated into the application code in the form of hints and control instructions to

support the intelligent replacement policy. A small hardware support logic module

uses the hints and control instructions to handle the additional cache state updates. A

trace-based or profile-based approach is used to derive and incorporate the necessary

information into the application code. These mechanisms are also implemented in the

Simplescalar simulator and evaluated in a stand-alone fashion and with prefetching

on the Spec2000 benchmarks.

1.5.2 Disjoint Sequences and Cache Partitioning

I propose the concept of disjoint sequences, where two address sequences are disjoint if their

memory addresses are disjoint, i.e., there is no common address between the two address

sequences. The concept of disjoint sequences facilitates the analysis and transformation

of address sequences. Since any address sequence can be considered as a merged address

sequence of one or more disjoint address sequences, an address sequence can be transformed

into a concatenation of disjoint address sequences. This temporal separation of disjoint
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sequences of an address sequence is used to derive conditions for physical separation of

disjoint sequences in the cache. A range of cache partitioning mechanisms and a static cache

partitioning algorithm are developed based on the disjoint sequences concept to address the

problems of cache performance and predictability. The specific contributions are:

• Theoretical Results: I prove theorems which show that changing an access sequence

into a concatenation of disjoint access sequences and applying the concatenated access

sequence to the cache is guaranteed to result in improved hit rate for the cache. I use

this result to derive partitioning conditions which guarantee that cache partitioning

leads to the same or less number of misses than the unpartitioned cache of the same

size.

• Partitioning Mechanisms: Several cache partitioning mechanisms are introduced

which support disjoint sequences-based partitioning. In particular, partitioning mech-

anisms based on a modified LRU replacement, cache tiles, and multi-tag sharing

approach are proposed in this thesis. In order to use a the cache partitioning mech-

anism, a partitioning algorithm is required. I have focussed on a static partitioning

algorithm which is inspired by the disjoint sequences-based theorems. This algorithm

determines disjoint sequences for an application, groups the disjoint sequences, and as-

signs the cache partition sizes to the groups. The cache partitioning mechanism based

on modified LRU replacement policy was implemented in the Simplescalar simulator.

A two-sequence static partitioning algorithm with the modified LRU replacement

policy-based partitioning mechanism was evaluated on the Spec2000 benchmarks.

1.6 Thesis Organization

In this chapter, I have outlined the performance bottlenecks of current processors, identified

research problems associated with data caches, put my thesis work in the context of previous

research work on caches, and summarized the contributions of this thesis.

In Chapter 2, a brief overview of the new mechanisms is given along with the overall

approach to implement and evaluate the mechanisms. The simulation framework and the

benchmarks used for evaluation are also described in this chapter.

In Chapter 3 and 4, the details of the intelligent cache replacement mechanism are

described. We give many variants in Chapter 3, including integrating the replacement
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schemes with prefetching. Theorems are proven that give performance guarantees in terms

of miss rates for the intelligent cache replacement methods. Implementation details of the

intelligent cache replacement mechanism are presented in Chapter 4.

In Chapter 5, the concept of disjoint sequences, a theoretical result regarding the hit

rates achieved by disjoint sequences, a relationship between disjoint sequences and cache

partitioning, and details of the hardware and software aspects of partitioning mechanisms

are presented.

In Chapter 6, a trace-based evaluation of the intelligent cache replacement and cache

pollution control with intelligent replacement on a subset of Spec95 and/or Spec2000 bench-

marks is presented. Also, the evaluation of cache partitioning based on disjoint sequences

is presented on a subset of Spec2000 benchmarks.

In Chapter 7, related work on intelligent cache replacement mechanisms and cache

partitioning schemes is summarized.

In Chapter 8 a summary of the thesis is followed by some possible extensions to the

work presented in this thesis.
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Chapter 2

Overview of Approach

2.1 Architecture Mechanisms

I propose approaches to make on-chip memory intelligent by adding additional hardware

logic and state to/near on-chip memory and by increasing the communication between the

processor and the on-chip memory. Application-specific information is communicated to the

on-chip memory hardware logic in different ways, as I elaborate on below. These enhance-

ments to the capability of the on-chip memory improve the on-chip memory performance,

which in turn improves embedded system performance.

The software support for the mechanisms is provided in the form of processor to on-

chip Memory communication. Additional information may be supplied to the memory

based on the application-specific information gathered during the program analysis. The

following methods are used to increase the interaction between the application and the

on-chip memory.

• hints: these are hints in the application code to communicate some specific infor-

mation to the on-chip memory. Such information is used by the hardware support

logic.

• control: these are specific controls that augment the state of some on-chip memory

resources.

• processor information: this is processor state conveyed to the on-chip memory

(e.g., branch history, load/store type).
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Figure 2-1: Overview of the Mechanisms

Each mechanism I propose targets a particular problem associated with using simple

on-chip memory. An intelligent on-chip memory would consist of support for one or more

mechanisms. The mechanisms differ in terms of the required hardware support, processor

to on-chip memory communication, and additional state information. The mechanisms

described in this thesis are targeted for the use of on-chip memory as a cache where the on-

chip cache would have more intelligent management of the cache resources. The taxonomy

of the proposed mechanisms is shown in Figure 2-1. A brief overview of the mechanisms is

given below and the details of the mechanisms are discussed in the following chapters.

An overview of the intelligent replacement mechanism is shown in Figure 2-2. The data

cache is augmented to have some additional state information and modified LRU replace-

ment logic. The intelligent cache replacement mechanism can use either the hardware-based

or software-assisted augmentation of the LRU replacement strategy.

Cache pollution due to aggressive hardware prefetching is measured for LRU replace-

ment. The proposed cache replacement mechanism is explored in the context of reducing

cache pollution when used with sequential hardware prefetching, an aggressive prefetch

method.

In order to use the cache space effectively, a cache partitioning approach based on disjoint

sequences is explored in this thesis. A high-level overview of the cache partitioning is shown

in Figure 2-2. The cache partitioning related information is derived using profile-based

analysis or dynamically in hardware. The static cache partitioning information is provided
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Figure 2-2: Overview of Intelligent Replacement and Cache Partitioning

via some additional instructions at the beginning of the program. This cache partitioning

information is maintained in a small hardware partitioning information table. The hardware

support for the way-based and set-based partitioning is described in Section 5.5.2 (Modified

LRU Replacement) and Section 5.5.2 (Cache Tiles) respectively.

2.2 Evaluation Methodology

2.2.1 Overall Flow

The overall flow of information for intelligent on-chip memory is shown in Figure 2-3. There

are two major steps in providing the software support for different mechanisms. First, the

program is analyzed to gather information about the application. Second, the information

about the application is incorporated into the program generated code. The type of analysis

and modification differs for the two on-chip cache mechanisms.

2.2.2 Program Analysis

Two primary ways of program analysis are static analysis and profile analysis. Static

analysis uses the intermediate representation of the source code of the program to analyze

the program and provides information about the control and data flow of the program.

Static analysis cannot easily determine program behaviors that are dependent on input
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data. Profile analysis of the program uses a training input data set and gets program

related information that may not be available through static analysis. The analysis of the

program identifies the points in the program where useful information can be communicated

to the underlying hardware logic for the chosen mechanism. I focus on profile analysis in

this thesis.

2.2.3 Program Code Modification

Program code is annotated with the appropriate instructions to communicate the informa-

tion gathered from program analysis. The program can be modified in two ways: annota-

tions are introduced during the program code generation, or annotations are introduced into

the assembly code after code generation. The code modification approach may depend on

the analysis approach used. These modifications to the code use the underlying hardware

for the mechanisms at run-time.

2.2.4 Simulation Framework

The cache mechanisms are implemented in the Simplescalar [11] simulator by modifying

some existing simulator modules and adding new functionality for each of the new mecha-

nisms. The simulator is also modified to handle the annotations appropriate for each of the

software-assisted mechanisms.
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2.2.5 Benchmarks

The intelligent cache replacement mechanism is evaluated using a subset of the Spec2000

benchmarks. The Spec2000 benchmarks consist of the Spec2000INT - integer benchmarks

and Spec2000FP - floating-point benchmarks.

2.3 Evaluation of the Mechanisms

The cache mechanisms are implemented in the Simplescalar simulator. The information

necessary for the hints and control instructions is derived using profile-based analysis. The

hints and control instructions are associated with a PC and written to an annotation file.

The hints and control instructions are conveyed to the Simplescalar simulator using this

annotation file and stored in a PC-based table in the Simplescalar simulator. Some of the

processor related information is conveyed to the cache module using the modified cache

module interface. A brief description of the implementation and evaluation of the mecha-

nisms is given below.

2.3.1 Intelligent Cache Replacement

The cache module of the Simplescalar was modified with additional state bits and a new

replacement policy. The hardware-based intelligent replacement uses some tables in the sim-

ulator to maintain and use dynamically generated information. For the software-assisted

intelligent replacement, the PC-based table is used in conjunction with the hardware struc-

tures. The intelligent cache replacement mechanism is evaluated in stand-alone fashion and

with prefetching. The prefetching method is implemented in the Simplescalar simulator and

is combined with the replacement mechanism to evaluate the reduction in cache pollution

with the intelligent replacement mechanism.

2.3.2 Cache Partitioning

The cache module of the Simplescalar simulator was modified to add partitioning related

state bits in the cache structures. Also some hardware structures necessary to maintain

partitioning related information were implemented into the Simplescalar. The partitioning

mechanism also makes use of the profile-based information using the PC-based table and

data range-based tables. The partitioning mechanism was evaluated in stand-alone fashion
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for performance and predictability. The way-based partitioning was implemented using a

modified LRU replacement policy which takes into account the partitioning information for

replacement. In the way-based partitioning evaluation, address segment information of the

accesses was used to form two disjoint sequences of accesses. The two disjoint sequences

were assigned cache partition sizes using a reuse distance-based partitioning algorithm. The

way-based cache partitioning evaluation results for the Spec2000 benchmarks are described

in Section 6.3.
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Chapter 3

Intelligent Cache Replacement

Mechanism

3.1 Introduction

The LRU replacement policy is a common replacement policy and it is the basis of the

intelligent cache replacement mechanism which offers miss rate improvement over the LRU

policy. The miss rate improvement over the LRU replacement policy offered by the intelli-

gent replacement mechanism is limited by the miss rate of the Optimal replacement policy

(OPT) [5] because the OPT replacement policy gives a lower bound on the miss rate for any

cache. So, the intelligent replacement mechanism improves cache and overall performance

of an embedded system by bringing the miss rate of an application closer to the miss rate

using the OPT replacement policy.

Figure 3-1 shows the miss rates for the Spec2000FP and Spec2000INT benchmarks

respectively using the LRU and OPT replacement policies. The miss rates were obtained

using the Sim-cheetah simulator [11, 110]. One billion instructions were simulated after

skipping the first two billion instructions. Similarly, Figure 3-2 shows the miss rates of

the LRU and OPT replacements policies for a subset of the Mediabench and Mibench

benchmarks. The results show that for some benchmarks there is appreciable potential for

improvement in LRU miss rates.

In this chapter the intelligent replacement mechanism based on a modification of the

LRU replacement policy is described in detail. Some of the work described herein has been
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Figure 3-1: LRU and OPT replacement misses for Spec2000FP and Spec2000INT bench-
marks using sim-cheetah
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Figure 3-2: LRU and OPT Miss Rates for Mediabench and Mibench

published in [42]. First, the basic concepts of dead block, killing a block, and keeping a block

are presented in Section 3.2. Then, the mechanisms based on these concepts are presented

in Section 3.3. These include an integration of intelligent replacement with prefetching to

control cache pollution. The theoretical results for the proposed mechanisms are presented

in Section 3.4. The implementation of the intelligent cache replacement is presented in

Chapter 4.

3.2 Basic Concepts

3.2.1 Dead Blocks

If there is a cache miss upon an access to a cache block b, the missed cache block b is brought

from the next level of the memory hierarchy. There may be one or more subsequent accesses

to the cache block b that result in cache hits. The cache block b is eventually chosen to be

evicted for another cache block as a result of the cache miss(es) that follow based on the

cache replacement policy. The cache block b is considered dead from its last cache hit to its

eviction from the cache.
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3.2.2 Kill a Block

A cache replacement policy can use the information about dead blocks in its replacement

decisions and choose a dead block over other blocks for replacement. The dead block

information introduces a priority level in the replacement policy. If the last access to a

cache block b can be detected or predicted either statically or dynamically, then the cache

block b can be killed by marking it as a dead block. The condition that determines the

last access to a cache block is called a kill predicate. So, when the kill predicate for a cache

block is satisfied, the cache block can be killed by marking it as a dead block.

3.2.3 Keep a Block

In some cases it may be desirable to assign a cache block b higher priority than other blocks

in the cache so that a replacement policy would choose other blocks over the block b for

replacement. This can be accomplished by Keeping the block b in the cache by setting some

additional state associated with the block b.

3.3 Mechanisms

The LRU replacement policy is combined with the above concepts of dead blocks, killing a

block, and keeping a block to form the intelligent replacement mechanisms. In the following

description, an element refers to a cache block.

3.3.1 Kill with LRU

In this replacement policy, each element in the cache has an additional one-bit state (K l),

called the kill state, associated with it. The Kl bit can be set under software or hardware

control. On a hit the elements in the cache are reordered along with their Kl bits the same

way as in an LRU policy. On a miss, instead of replacing the LRU element in the cache,

an element with its Kl bit set is chosen to be replaced and the new element is placed at

the most recently used position and the other elements are reordered as necessary. Two

variations of the replacement policy to choose an element with the Kl bit set for replacement

are considered: (1) the least recent element that has its Kl bit set is chosen to be replaced

(LRK LRU policy); (2) the most recent element that has its Kl bit set is chosen to be

replaced (MRK LRU policy). The Kl bit is reset when there is a hit on an element with its
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Figure 3-3: Kill+LRU Replacement Policy

Kl bit set unless the current access sets the Kl bit. It is assumed that the Kl bit is changed

– set or reset – for an element upon an access to that element. The access to the element

has an associated hint that determines the Kl bit after the access and the access does not

affect the Kl bit of other elements in the cache.

Figure 3-3 shows how the Kl bit is used with the LRU policy. It shows a fully-associative

cache with four elements. Initially, the cache state is {a, c, b, e} with all the Kl bits reset.

When b is killed (b is accessed and its Kl bit is set) b becomes the MRU element and the new

cache state is {b, a, c, e}. Then, c is accessed and a is killed. After a is killed, the cache state

is {a, c, b, e} and the Kl bits for a and b are set. When d is accessed, it results in a cache miss

and an element needs to be chosen for replacement. In the Kill+LRU replacement policy,

using the variation (2), the most recently killed (MRK) element a is chosen for replacement

and the new cache state is {d, c, b, e}. If the LRU replacement policy were used, the LRU
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element e would be chosen for replacement and the new cache state would be {d, a, c, b}.

MRK-LRU based Miss Rate Estimation and OPT Policy

The miss rate for the MRK LRU (Most Recently Killed) variation (2) of the Kill+LRU

replacement policy can be estimated using the reuse distance profile of a program under

a uniform reuse distance model. This estimated miss rate gives an idea of the miss rate

improvement possible over LRU for the given program. Also, the estimated miss rate

improvement with the MRK LRU policy can be compared to the miss rate improvement

under the OPT policy. The miss rate estimation method can be useful in determining how

effective the MRK LRU replacement policy would be for a given program.

Consider a uniform reuse distance model where all the accesses have a distinct block

reuse distance d between two accesses to the same block. For a given associativity a and a

uniform reuse distance model with d such that d ≥ a, in steady-state the LRU replacement

would miss on every access resulting in miss rate 1.0 and the MRK-LRU would have the

miss rate 1.0−(a−1)/d. So, the miss rate improvement of MRK-LRU over LRU is (a−1)/d.

For example, given the access sequence {a, b, c, d, e, a, b, c, d, e, a, b, c, d, e, ...} where the

uniform reuse distance is 4 and assuming a 4-word fully-associative cache, the access se-

quence would result in a miss every fourth access in the steady-state (i.e., when the cache

reaches the full state from an initially empty state). For this example, the corresponding

miss-hit sequence is {m,m,m,m,m, h, h, h,m, h, h, h,m, h, h, ...}.

The above uniform reuse distance model can be used to estimate the miss rate improve-

ment for a given program if the reuse distance profile of the program is available. Suppose

the distribution of the reuse distances for a program is such that Wd is the weight for a reuse

distance d ≥ a, for a given associativity a. The miss rate improvement can be estimated

using the following formula based on the uniform reuse distance model:

MRImpv = (a − 1) ×
dmax∑

d=a

Wd

d

The miss rate improvement formula was applied to the reuse distance profile of the

Spec2000 benchmarks for a set-associative cache with a = 4 and dmax = 256. The reuse

distance profile was collected using the replacement-to-miss distance history with dmax =

256. The miss rate improvement estimate is compared to the OPT miss rate improvement
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Figure 3-4: OPT Improvement and Estimated Improvement Based on Profile data and
Uniform Distance Model

in Figure 3-4.

Since the blocks with a certain reuse distance get replaced by blocks with a different

reuse distance, the uniform distance assumption does not hold in all instances for a given a

reuse distance profile. As a result, the estimate is sometimes higher or lower than the OPT

miss rate improvement. If the estimate is lower than the OPT, then it indicates that OPT

was able to find the blocks with higher distance to replace for the ones with lower distance.

If the estimate is higher than the OPT, then it indicates that the formula is more optimistic

than the actual OPT block replacement choices. As an aside, a more accurate model for

miss-rate improvement estimation can be developed using some more parameters derived

from the profile-based analysis and some more information about the block replacements.

3.3.2 Kill and Keep with LRU

In this replacement policy, each element in the cache has two additional states associated

with it. One is called a kill state represented by a Kl bit and the other is called a keep state

represented by a Kp bit. The Kl and Kp bits cannot both be 1 for any element in the cache

at any time. The Kl and Kp bits can be set under software or hardware control. On a hit
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Figure 3-5: Kill+Keep+LRU Replacement Policy

the elements in the cache are reordered along with their Kl and Kp bits the same way as in

an LRU policy. On a miss, if there is an element with the Kp bit set at the LRU position,

then instead of replacing this LRU element in the cache, the most recent element with the

Kl bit set is chosen to be replaced by the element at the LRU position (to give the element

with the Kp bit set the most number of accesses before it reaches the LRU position again)

and all the elements are moved to bring the new element at the most recently used position.

On a miss, if the Kp bit is 0 for the element at the LRU position, then the elements in the

cache are reordered along with their Kl and Kp bits in the same way as in an LRU policy.

There are two variations of this policy: (a) Flexible Keep: On a miss, if there is an element

at the LRU position with the Kp bit set and if there is no element with the Kl bit set, then

replace the LRU element (b) Fixed Keep: On a miss, if there is an element at the LRU

position with the Kp bit set and if there is no element with the Kl bit set, then replace the
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least recent element with its Kp bit equal to 0.

Figure 3-5 shows how the Kl and Kp bits are used with the LRU policy. It shows a

fully-associative cache with four elements. Initially, the cache state is {a, c, b, e} with all the

Kl bits reset and Kp bits set for c and e. When b is killed (b is accessed and its Kl bit is

set) b becomes the MRU element and the new cache state is {b, a, c, e}. Then, d is accessed

and it results in a cache miss and an element needs to be chosen for replacement. In the

flexible keep variation of the Keep with Kill+LRU replacement policy, the most recently

killed element a is chosen for replacement because e is in the LRU position with its Kp bit

set. The new cache state is {d, e, a, c}. Now, the access to f results in a miss and c is the

LRU element chosen for replacement because there is no element with its Kl bit set. The

final cache state is {f, d, e, a}. If the fixed keep variation is used, the cache state before

the access to f is the same cache state for the flexible keep variation: {d, e, a, c}. Now,

upon an access to f , there is a cache miss and a is chosen for replacement because c has its

Kp bit set and a is the least recently used element with its Kp bit reset. The final cache

state is {f, d, e, c}. If the LRU replacement policy were used, the final cache state would be

{f, d, b, a}.

Flexible Keep and Kill with LRU

The flexible Kill+Keep+LRU allows the blocks marked as Keep blocks to be kept in the

cache as long as possible without reducing the hit rate compared to the LRU policy. But,

the Flexible Keep can result in less hits than the Kill+LRU replacement if the blocks that

are marked to be kept in the cache have the reuse distance longer than the blocks that are

not marked as Keep blocks. As a result, some of the blocks not marked as Keep blocks

would be replaced and lead to more misses than the hits resulting from the blocks marked

to be kept in the cache. Even though the Kill+Keep+LRU results in lower overall hit rate

for a set of data marked to be kept in the cache compared to the Kill+LRU, it improves

cache predictability of the data in the cache marked to be kept in the cache.

The other approach for keeping important data in on-chip memory is by assigning the

data to the SRAM, but this approach requires using different structures for the cache and

the SRAM. The data kept in the SRAM is available all the time, but the data in the

SRAM needs to be explicitly assigned to the SRAM and it may require some data layout

to accommodate different data that needs to be kept in the SRAM at the same time.
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3.3.3 Kill and Prefetch with LRU

The above mechanisms considered only the accesses issued by the processor that resulted

in a cache miss or a hit. A cache block can be brought into the cache by prefetching it

before it is requested by the processor. When prefetching is used in addition to the normal

accesses to the cache, there are different ways to handle the prefetched blocks.

Cache pollution is a significant problem with hardware prefetching methods, since hard-

ware methods typically need to be aggressive in order to have simple implementations.

Cache pollution can be controlled by using the intelligent cache replacement mechanism,

and the resultant prefetch strategies can improve performance in many cases. I will show

that a new prefetch scheme where 1 or 2 adjacent blocks are prefetched depending on

whether there is dead data in the cache or not works very well, and is significantly more

stable than standard sequential hardware prefetching (cf. Section 6).

There are four different scenarios for integrating intelligent cache replacement with

prefetching as shown in Figure 3-6.

(a): Figure 3-6(a) illustrates the standard LRU method without prefetching. New data

is brought into the cache on a miss, and the LRU replacement policy is used to evict

data in the cache. This method is denoted as (LRU, φ), where the first item in the

2-tuple indicates that new (normal) data brought in on a cache miss replaces old data

based on the LRU policy, and the φ indicates that there is no prefetched data.

(b): Figure 3-6(b) illustrates generic prefetching integrated with standard LRU replace-

ment. This method is denoted as (LRU, LRU) – normal data brought in on a cache

miss as well as prefetched data replace old data based on the LRU policy.

(c): Figure 3-6(c) integrates Kill + LRU replacement with a generic prefetching method.

Normal data brought in on a cache miss as well as prefetched data replaces old data

based on the Kill + LRU replacement strategy described in Section 3.3.1. This method

is denoted as (Kill + LRU, Kill + LRU).

(d): Figure 3-6(d) integrates Kill + LRU replacement with a generic prefetching method

in a different way. Normal data brought in on a cache miss replaces old data based

on the Kill + LRU policy, but prefetched data is only brought in if there is enough

dead data. That is, prefetched data does not replace data which does not have its
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Figure 3-6: Integrating Prefetching with Modified LRU Replacement

kill bit set. Further, when the prefetched data replaces dead data, the LRU order of

the prefetched data is not changed to MRU, rather it remains the same as that of the

dead data. This method is denoted as (Kill + LRU, Kill).

There is one other variant that is possible, the (LRU, Kill + LRU) variant. I do not

consider this variant since it does not have any interesting properties.

3.4 Theoretical Results

The theoretical results are presented for the replacement mechanisms that use the additional

states to keep or kill the cache lines. The conditions are shown under which the replacement

mechanisms with the kill and keep states are guaranteed to perform as good or better than

the LRU policy. Also, the theorems for prefetching with LRU and Kill+LRU are presented

here.

3.4.1 Kill+LRU Theorem

Definitions: For a fully-associative cache C with associativity m, the cache state is an

ordered set of elements. Let the elements in the cache have a position number in the range
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[1, ...,m] that indicates the position of the element in the cache. Let pos(e), 1 ≤ pos(e) ≤ m

indicate the position of the element e in the ordered set. If pos(e) = 1, then e is the most

recently used element in the cache. If pos(e) = m, then the element e is the least recently

used element in the cache. Let C(LRU, t) indicate the cache state C at time t when using

the LRU replacement policy. Let C(KIL, t) indicate the cache state C at time t when using

the Kill + LRU policy. I assume the Kill + LRU policy variation (1) in the sequel. Let X

and Y be sets of elements and let X0 and Y0 indicate the subsets of X and Y respectively

with Kl bit reset. Let the relation X �0 Y indicate that the X0 ⊆ Y0 and the order of

common elements (X0∩Y0) in X0 and Y0 is the same. Let X1 and Y1 indicate the subsets of

X and Y respectively with Kl bit set. Let the relation X �1 Y indicate that the X1 ⊆ Y1

and the order of common elements (X1 ∩ Y1) in X1 and Y1 is the same. Let d indicate the

number of distinct elements between the access of an element e at time t1 and the next

access of the element e at time t2.

I first give a simple condition that determines whether an element in the cache can be

killed. This condition will serve as the basis for compiler analysis to determine variables

that can be killed.

Lemma 1 If the condition d ≥ m is satisfied, then the access of e at t2 would result in a

miss in the LRU policy.

Proof: On every access to a distinct element, the element e moves by one position

towards the LRU position m. So, after m−1 distinct element accesses, the element e reaches

the LRU position m. At this time, the next distinct element access replaces e. Since d ≥ m,

the element e is replaced before its next access, therefore the access of e at time t2 would

result in a miss.

Lemma 2 The set of elements with Kl bit set in C(KIL, t) �1 C(LRU, t) at any time t.

Proof: The proof is based on induction on the cache states C(KIL, t) and C(LRU, t).

The intuition is that after every access to the cache (hit or miss), the new cache states

C(KIL, t+1) and C(LRU, t+1) maintain the relation �1 for the elements with the Kl bit

set.

At t = 0, C(KIL, 0) �1 C(LRU, 0).

Assume that at time t, C(KIL, t) �1 C(LRU, t).
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At time t + 1, let the element that is accessed be e.

Case H: The element e results in a hit in C(KIL, t). If the Kl bit for e is set, then e is

also an element of C(LRU, t) from the assumption at time t. Now the Kl bit of e would be

reset unless it is set by this access. Thus, I have C(KIL, t + 1) �1 C(LRU, t + 1). If the

Kl bit of e is 0, then there is no change in the order of elements with the Kl bit set. So, I

have C(KIL, t + 1) �1 C(LRU, t + 1).

Case M: The element e results in a miss in C(KIL, t). Let y be the least recent element with

the Kl bit set in C(KIL, t). If e results in a miss in C(LRU, t), let C(KIL, t) = {M1, y,M2}

and C(LRU, t) = {L, x}. M2 has no element with Kl bit set. If the Kl bit of x is 0,

{M1, y} �1 {L} implies C(KIL, t+1) �1 C(LRU, t+1). If the Kl bit of x is set and x = y

then {M1} �1 {L} and that implies C(KIL, t + 1) �1 C(LRU, t + 1). If the Kl bit of x is

set and x 6= y, then x 6∈ M1 because that violates the assumption at time t. Further, y ∈ L

from the assumption at time t and this implies C(KIL, t + 1) �1 C(LRU, t + 1).

I show the proof of the theorem below for variation (1); the proof for variation (2) is

similar.

Theorem 1 For a fully associative cache with associativity m if the Kl bit for any element

e is set upon an access at time t1 only if the number of distinct elements d between the

access at time t1 and the next access of the element e at time t2 is such that d ≥ m, then

the Kill + LRU policy variation (1) is as good as or better than LRU.

Proof: The proof is based on induction on the cache states C(LRU, t) and C(KIL, t).

The intuition is that after every access to the cache, the new cache states C(LRU, t+1) and

C(KIL, t + 1) maintain the �0 relation for the elements with the Kl bit reset. In addition,

the new cache states C(KIL, t + 1) and C(LRU, t + 1) maintain the relation �1 based on

Lemma 2. Therefore, every access hit in C(LRU, t) implies a hit in C(KIL, t) for any time

t.

I consider the Kill + LRU policy variation (1) for a fully-associative cache C with

associativity m. I show that C(LRU, t) �0 C(KIL, t) at any time t.

At t = 0, C(LRU, 0) �0 C(KIL, 0).

Assume that at time t, C(LRU, t) �0 C(KIL, t).

At time t + 1, let the element accessed is e.

Case 0: The element e results in a hit in C(LRU, t). From the assumption at time t, e
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results in a hit in C(KIL, t) too. Let C(LRU, t) = {L1, e, L2} and C(KIL, t) = {M1, e,M2}.

From the assumption at time t, L1 �0 M1 and L2 �0 M2. From the definition of LRU and

Kill + LRU replacement, C(LRU, t + 1) = {e, L1, L2} and C(KIL, t + 1) = {e,M1,M2}.

Since {L1, L2} �0 {M1,M2}, C(LRU, t + 1) �0 C(KIL, t + 1).

Case 1: The element e results in a miss in C(LRU, t), but a hit in C(KIL, t). Let

C(LRU, t) = {L, x} and C(KIL, t) = {M1, e,M2}. From the assumption at time t,

{L, x} �0 {M1, e,M2} and it implies that {L} �0 {M1, e,M2}. Since e 6∈ L, I have {L} �0

{M1,M2}. From the definition of LRU and Kill + LRU replacement, C(LRU, t+1) = {e, L}

and C(KIL, t + 1) = {e,M1,M2}. Since L �0 {M1,M2}, C(LRU, t + 1) �0 C(KIL, t + 1).

Case 2: The element e results in a miss in C(LRU, t) and a miss in C(KIL, t) and there is

no element with Kl bit set in C(KIL, t). Let C(LRU, t) = {L, x} and C(KIL, t) = {M,y}.

From the assumption at time t, there are two possibilities: (a) {L, x} �0 M , or (b) L �0 M

and x = y. From the definition of LRU and Kill + LRU replacement, C(LRU, t+1) = {e, L}

and C(KIL, t + 1) = {e,M}. Since L �0 M for both sub-cases (a) and (b), I have

C(LRU, t + 1) �0 C(KIL, t + 1).

Case 3: The element e results in a miss in C(LRU, t) and a miss in C(KIL, t) and there

is at least one element with the Kl bit set in C(KIL, t). There are two sub-cases (a) there

is an element with the Kl bit set in the LRU position, (b) there is no element with the

Kl bit set in the LRU position. For sub-case (a), the argument is the same as in Case 2.

For sub-case (b), let the LRU element with the Kl bit set be in position i, 1 ≤ i < m.

Let C(LRU, t) = {L, x} and C(KIL, t) = {M1, y,M2}, M2 6= φ. From the assumption

at time t, {L, x} �0 {M1, y,M2}, which implies {L} �0 {M1, y,M2}. Since y has the Kl

bit set, y ∈ L using Lemma 2. Let {L} = {L1, y, L2}. So, {L1} �0 {M1} and {L2} �0

{M2}. Using Lemma 1, for the LRU policy y would be evicted from the cache before the

next access of y. The next access of y would result in a miss using the LRU policy. So,

{L1, y, L2} �0 {M1,M2} when considering the elements that do not have have the Kl bit set.

From the definition of LRU and Kill + LRU replacement, C(LRU, t + 1) = {e, L1, y, L2}

and C(KIL, t + 1) = {e,M1,M2}. Using the result at time t, I have C(LRU, t + 1) �0

C(KIL, t + 1).

3.4.2 Kill+Keep+LRU Theorem

We now prove a theorem regarding the Flexible Keep policy.
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Theorem 2 (a) The Flexible Keep variation of the Kill + Keep + LRU policy is as good

as or better than the LRU policy. (b) Whenever there is an element at the LRU position

with the Kp bit set if there is also a different element with the Kl bit set, then the Fixed

Keep variation of the Kill + Keep + LRU policy is as good as or better than LRU.

Proof: I just give a sketch of the proof here, since the cases are similar to the ones

in the Kill+LRU Theorem. I assume a fully-associative cache C with associativity m. Let

C(KKL, t) indicate the cache state C at time t when using the Kill+Keep+LRU policy.

A different case from the Kill+LRU theorem is where the current access of an element e

results in a miss in C(KKL, t) and the element x at the LRU position has its Kp bit set.

Consider the Flexible Keep variation of the Kill+Keep+LRU policy. If there is no

element with the Kl bit set, then the element x is replaced and the case is similar to the

Kill+LRU policy. If there is at least one element with the Kl bit set in C(KKL, t), let the

most recent element with its Kl bit set is y. Let the cache state C(KKL, t) = {L1, y, L2, x}.

The new state is C(KKL, t + 1) = {e, L1, x, L2}. There is no change in the order of the

elements in L1 and L2, so the relationship C(LRU, t + 1) �0 C(KKL, t + 1) holds for the

induction step. This implies the statement of Theorem 2(a).

Consider the Fixed Keep variation of the Kill+Keep+LRU policy. If there is at least

one element with the Kl bit set in C(KKL, t), let the most recent element with its Kl bit

set be y. Let the cache state C(KKL, t) = {L1, y, L2, x}. The new state is C(KKL, t +

1) = {e, L1, x, L2}. There is no change in the order of the elements in L1 and L2, so the

relationship C(LRU, t+1) �0 C(KKL, t+1) holds for the induction step. This implies the

statement of Theorem 2(b).

Intuitively, the Flexible Keep theorem says that keep the data marked as Keep data

whenever possible, i.e., if a Keep marked data would be replaced because it is at the LRU

position, then a dead block can save the Keep data from being replaced. This is done by

moving the Keep data at LRU position in a dead block’s place and bringing a new block as

in the LRU replacement policy. If there is no dead block available to save the Keep marked

data from being replaced, then the Keep marked block is replaced. Both of these cases

result in cache states that are supersets of the cache state for the LRU replacement.

In the Fixed Keep variation of the Kill+Keep+LRU the data that is marked as Keep

data cannot be replaced by other blocks. If at any one instance in time, there is no dead

block available for a Keep data at the LRU position then the least recent non-Keep data is
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replaced. This instance can result in more misses in the Fixed Keep variation compared to

the LRU policy. That is why the statement of the Fixed Keep Theorem in Section 3.4.2 has

an extra condition, which is the weakest condition necessary for the Fixed Keep variation

of Kill+Keep+LRU to have as good or better hit rate than the LRU replacement.

Set-Associative Caches

Theorem 1 and Theorem 2 can be generalized to set-associative caches.

Theorem 3 For a set-associative cache with associativity m if the Kl bit for any element

e mapping to a cache-set i is set upon an access at time t1 only if the number of distinct

elements d, mapping to the same cache-set i as e between the access at time t1 and the next

access of the element e at time t2, is such that d ≥ m, then the Kill+LRU policy variation

(1) is as good as or better than LRU.

Proof: Let the number of sets in a set-associative cache C be s. Every element maps

to a particular cache set. After an access to the element e that maps to cache set i, the

cache state for the cache sets 0 to i − 1 and i + 1 to s − 1 remains unchanged. The cache

set i is a fully-associative cache with associativity m. So, using Theorem 1, the Kill+LRU

policy variation (1) is as good as or better than LRU for the cache set i. This implies the

statement of Theorem 3.

Theorem 4 (a) The Flexible Keep variation of the Kill + Keep + LRU policy is as good

as or better than the LRU policy. (b) Whenever there is an element at the LRU position

with the Kp bit set in a cache-set i, if there is a different element with the Kl bit set in the

cache-set i, then the Fixed Keep variation of the Kill + Keep + LRU policy is as good as

or better than LRU.

Proof: I omit the proof of this theorem because it is similar to Theorem 3.

3.4.3 Kill+LRU with Prefetching Theorems

The combination of prefetching with LRU and Kill+LRU replacement as described in Sec-

tion 3.3.3 have some properties and the theoretical results based on these properties are

presented here. One property proven here is that (Kill + LRU, Kill + LRU) will perform

as good or better than (LRU, LRU) if any prefetching strategy, which is not predicated on
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cache hits or misses, is used, as long as it is the same in both cases. The other property is

that (Kill + LRU, Kill) will perform as good or better than (LRU, φ) for any prefetching

strategy. Note that (Kill + LRU, Kill + LRU) could actually perform worse than (LRU, φ)

(Of course, if a good prefetch algorithm is used, it will usually perform better). Similarly,

(Kill + LRU, Kill + LRU) could perform worse or better than (Kill + LRU, Kill).

Theorem 5 Given a set-associative cache, Strategy (Kill + LRU, Kill + LRU) where Kill

+ LRU corresponds to variation (1) is as good as or better than Strategy (LRU, LRU) for

any prefetch strategy not predicated on hits or misses in the cache.

Proof: (Sketch) Consider a processor with a cache C1 that runs Strategy (Kill +

LRU, Kill + LRU), and a processor with a cache C2 that runs Strategy (LRU, LRU).

I have two different access streams, the normal access stream, and the prefetched access

stream. Accesses in these two streams are interspersed to form a composite stream. The

normal access stream is the same regardless of the replacement policy used. The prefetched

access stream is also the same because even though the replacement strategy affects hits

and misses in the cache, by the condition in the theorem, the prefetch requests are not

affected. Therefore, in the (Kill + LRU, Kill + LRU) or the (LRU, LRU) case, accesses in

composite stream encounter (Kill + LRU) replacement or LRU replacement, respectively.

Since it does not matter whether the access is a normal access or a prefetch access, I can

invoke Theorem 3 directly.

I can show that (Kill + LRU, Kill) is always as good or better than (LRU, φ).

Theorem 6 Given a set-associative cache, the prefetch strategy (Kill + LRU, Kill) where

the Kill + LRU policy corresponds to variation (1) is as good or better than the prefetch

strategy (LRU, φ).

Proof: (Sketch) The prefetch strategy (Kill + LRU, Kill) results in two access streams,

the normal accesses and the prefetched blocks. The no-prefetch (LRU, φ) strategy has only

the normal access stream. Invoking Theorem 3, the number of misses in the normal access

stream is no more using Kill + LRU replacement than LRU replacement. The prefetch

stream in the (Kill + LRU, Kill) strategy only affects the state of the cache by replacing a

dead element with a prefetched element. When this replacement occurs, the LRU ordering

of the dead item is not changed. If the element has been correctly killed, then no subsequent
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access after the kill will result in a hit on the dead element before the element is evicted

from the cache. A dead element may result in a hit using the Kill + LRU replacement due

to the presence of multiple dead blocks, but the same block would result in a miss using

the LRU replacement. Therefore, I can replace the dead element with a prefetched element

without loss of hits/performance. It is possible that prefetched item may get a hit before

it leaves the cache, in which case performance improves.
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Chapter 4

Implementation of Intelligent

Cache Replacement

4.1 Overview

In the previous chapter, the condition that determines the last access to a cache block

is called a kill predicate and when the kill predicate for a cache block is satisfied, the

cache block can be killed by marking it as a dead block. Two approaches to kill cache

blocks are considered here: hardware-based and software-assisted. The hardware-based

approach performs all the tasks related to building and using the kill predicates in hardware.

The software-assisted approach uses compiler analysis or profile-based analysis to introduce

additional instructions or annotations into the code that use the associated hardware to

build and use the kill predicates.

4.2 Intuition behind Signatures

The hardware-based approach needs to build the kill predicates using some hardware sup-

port and use the predicates to kill blocks by marking them as dead blocks. Since the

hardware does not have information about the future accesses, it uses some form of history

information along with other information to form kill predicates. The history information

consists of a sequence of accesses and this information is captured in the form of a signature.

The signatures can be formed using load/store instruction PCs and/or additional informa-

tion as described later. The history information in the form of signatures is used to predict
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the dead blocks, i.e., a signature indicates when a block is dead and can be marked as a dead

block. For example, consider a block b and the sequence Tx of PCs = {PC1, PC2, ..., PCn}

ranging from the miss of block b (PC1) and the last PC (PCn) before the block b is replaced

from the cache. Suppose Tx is captured in the form of a signature Sx. Now, if the block b is

accessed in the future by a sequence Ty, the signature Sy corresponding the next sequence

Ty is compared to Sx and if there is a match, then b is marked as a killed block. The success

of history-based prediction relies on the repetition of access sequences of blocks that result

in dead blocks. There is another way the history information for a block b1 can be used to

predict the dead block for block b2. This way relies on the same history information based

signatures for multiple blocks. Suppose the signature S1 for the block b1 indicates that the

block b1 is a dead block. If the signature for some other neighboring blocks b2, ..., bk is the

same as the signature S1, then the signature S1 can be used as the dead block signature

for the neighboring blocks b2, ..., bk. So, even if the access sequence for a block (b1) does

not repeat, the history information from one block (S1) can be applied to other blocks

(b2, ..., bk).

4.3 Hardware-based Kill+LRU Replacement

In this approach, all the tasks related to computing and using the kill predicates are per-

formed in hardware. The kill predicates are approximated in the form of signatures and
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these signatures are matched against the current signatures associated with cache lines to

kill the cache lines. The following steps are involved in using the hardware kill predicates

based on signatures:

1. Compute Signatures: The signatures can be computed using different signature func-

tions involving different types of information.

2. Store Signatures: The signatures can be stored such that they are associated with

load/store instructions, data cache blocks, or data address ranges.

3. Lookup Signatures: The signatures are looked up in the signature table to determine

if a cache line block can be killed or not.

The hardware support for hardware kill predicates using signatures is shown in Fig-

ure 4-1 and the pseudo-code for the hardware kill predicates algorithm based on signatures

is shown in Figure 4-2. The algorithm for hardware kill predicates using signatures works

as follows. When a data cache block b is brought into the cache, the current signature s

associated with b is initialized. Upon every access to b, the signature s is updated using

the chosen signature function. The current signature s is compared to the signatures corre-

sponding to block b in the signature table T . If there is a match, then the block b is marked

killed. When the block b is replaced, the signature entry corresponding to b in the signature

table T is updated with the signature s, if the value does s not exist in T .

4.3.1 Signature Functions

Signature functions use a variety of information to build the signatures. A kill predicate

may consist of other information in addition to a signature. The signature functions are:

• XOR LDST: The PCs of the load/store instructions accessing a data cache block

are XOR’ed together.

• XOR LDST ROT: The PC of a load/store instruction is rotated left by the number

of accesses to the accessed cache block and it is XOR’ed with the current signature.

• BR HIST: A path indicated by last n taken/not taken committed branches is used as

a signature. Though a signature based on load/store instructions implicitly includes

the path information, a signature based on the branch history incorporates explicit

path information.
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Algorithm: Hardware Kill Predicates using Signatures

On a Cache Hit:
Compute the new signature
Update the signature in the data cache block
Check the signature in the signature table
if found then
Mark the cache block killed

end if

On a Cache Miss:
Check the replaced block signature in the signature table
if not found then
Replace the last entry for the block in the table

end if
Initialize the signature for the new block
Check the new block’s signature entry in the signature table
if found then
Mark the cache line killed

end if

Figure 4-2: Signature-based Hardware Kill Predicates

• TRUNC ADD LDST: The PCs of the load/store instructions are added to form a

signature. The result of the addition is truncated based on the number of bits chosen

for the signature.

• Signatures based on load/store Classification: In this approach, different sig-

natures parameters or functions are used for the load/stores based on the load/store

classification. The instructions are classified into the different types either statically

or dynamically. The classification helps because the signatures reflect the types of

accesses associated with the instructions.

A kill predicate may consist of a signature, or some information, or a combination of a

signature and some information. Some examples of kill predicates are: Signature, Number

of Accesses, Number of Accesses and XOR LDST, Number of Accesses and XOR LDST

and Cache Set, Number of Accesses and XOR LDST ROT, Number of Accesses and

XOR LDST ROT and Cache Set.
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4.3.2 Storing Signatures

There are different ways to store the signatures computed for the data cache blocks in the

signature table.

• Signatures associated with instructions: In this approach, the signatures are

stored in a signature table using partial load/store PCs as store/lookup indices. The

partial load/store PC or a pointer to the load/store miss table that keeps the partial

load/store PCs is kept as part of the data cache block and initialized when the data

cache block is brought into the cache.

The load/stores that miss in the data cache bring in a new data cache block into the

data cache. These load/stores are a small percentage of load/store instructions. This

approach works well when the load/store instructions that miss have a small number

of distinct signatures for the different data cache blocks they access. So, it requires a

small number of signatures for every partial load/store PC. The disadvantage of this

approach is that the number of signatures associated with the load/store instructions

may vary across the application.

• Signatures associated with data blocks: When there are many signatures for the

load/store instructions that miss, it is better to store the signatures in the table using

data block addresses as indices.

• Signatures associated with data address ranges: To take advantage of the

similarity of the access patterns for some data address ranges, the signatures can be

stored and looked up based on the data address ranges.

• Signatures stored using Hash Functions: Some hash functions can be used to

store and access the signatures in the signature table. The hash functions distribute

the signatures in the signature table to reduce the conflicts.

Using Reuse Distance

The replacement-to-miss distance information can be combined with other information

such as a kill bit to make replacement decisions. The replacement-to-miss distance can

be measured in hardware. The reuse distance captures some of the difference between the

most-recently-killed Kill+LRU policy and the optimal replacement by allowing a choice in
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selecting a killed block for replacement. With the use of reuse distance, the problem of

stale killed blocks can be avoided because the killed blocks with the reuse distance greater

than the most recently killed block would be selected for replacement before a most recently

killed block. Figure 4-3 shows how the reuse distance (replacement-to-miss distance) can

be measured in hardware. It uses an Instruction Annotation Table (IAT) and a Reuse Ta-

ble (RT) to measure the replacement-to-miss distance for the instructions. An instruction

annotation table (IAT) entry keeps a pointer to the replacement table (RT). The RT table

stores the information about the reuse distance measurements under progress. A status bit

meas reuse with values pending and idle is used to indicate if the reuse distance measure-

ment is in progress. Reuse distance is measured for one set at a time for a given load/store

instruction. There is a set miss count (SMC) which keeps the number of misses per set.

The number of bits used for the count limit the the maximum reuse distance that can be

measured.

4.4 Software-assisted Kill+LRU Replacement

In this approach, a compiler analysis or profile-based analysis is done to determine the kill

predicates and these kill predicates are incorporated into the generated code using some
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Figure 4-4: Software-assisted Kill+LRU Replacement Hardware

additional instructions. These additional instructions communicate the kill predicates to

the associated hardware. The hardware may setup some registers and set the kill bits of the

data cache blocks according to the specified kill predicates. The interaction of the hardware

and the additional information introduced by the compiler is shown in Figure 4-4.

4.4.1 Kill Predicate Instructions

The kill predicate instructions have different software and hardware costs associated with

them. Different kill predicate instructions are suited for different types of kill predicates.

The choice of a kill predicate instruction to use at a particular point in the program is

up to the compiler algorithm. The compiler algorithm uses the appropriate kill predicate

instruction to handle the desired kill predicate.

The kill predicate instructions can be introduced anywhere in the code, but to reduce

the overhead of these instructions, it is better to put them either before a loop or after

a loop. The kill predicate instructions where the kill predicate is part of the load/store

instruction do not introduce any execution time overhead. In order to reduce the execution

time overhead, an annotation cache can be used as described later. The following kill

predicate instructions are used by the compiler algorithm:

• LDST KILL: A new load/store instruction that sets the kill bit on every access gen-

erated by the instruction. The kill predicate (set kill bit) is part of the instruction

encoding.
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• LDST HINT KPRED: There is a hint or condition attached with the load/store in-

struction. The hint may require an additional instruction word to specify this instruc-

tion. For example, the kill predicate can be count n which indicates that on every nth

access generated by the instruction, the kill bit of the accessed cache block should be

set.

• LDST CLS: This instruction conveys the instruction classification information that

can help in determining the kill predicates. The class information indicates the type

of accesses issued by the load/store instruction (e.g., stream accesses).

• PRGM LDST KPRED: Programmable kill predicate load/store instruction specifies

the kill predicate and the load/store PC to attach the kill predicate. This instruction

can be used before a loop to setup a hardware table that is accessed using the PC.

Upon an access, the load/store PC is used to lookup and update the hardware table.

This instruction is different from the above instructions because the kill predicate

information is maintained in a separate table.

• LDST AUTO BLK KPRED: This instruction sets the auto-kill bit in the cache blocks

accessed by the kill predicate instruction. The kill predicate indicates the type of

information that would be maintained with each data cache block and when the block

is accessed. If the kill predicate is satisfied the block is marked killed.

• STC DRNG KPRED: Static kill address range instruction specifies the address range

and a kill predicate that is used to set kill bits for the data cache blocks that fall

within the range and satisfy the kill predicate. This instruction can be put either

before a loop or after a loop.

• DYN DRNG KPRED: Dynamic kill address range information where the address

range and a kill predicate are used to compare and set the kill bits. The range

changes based on the condition specified as part of the instruction. This instruction

is used in manner similar to the STC DRNG KPRED instruction.

Kill Range Implementation

The kill range hardware implementation is shown in Figure 4-5. A hardware table stores

the information about the ranges of addresses and matches those addresses to the addresses
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generated and declares the blocks killed based on the condition in the hardware table. The

hardware table consists of the Start Address and End Address entries. The entries of the

table can be updated in the FIFO manner or using some other policy as desired. When an

address is provided for comparison, it is compared with the address ranges in parallel and

the associated kill predicates. Upon an access to a set in the cache, if the address results in

a miss, then the addresses corresponding to the tags in the set are provided to the hardware

range table for sequential comparison and if any address falls within a range and satisfies

the kill predicate, then the tag corresponding to that address is marked as the killed tag

and this information is used during the replacement.

4.4.2 Profile-based Algorithm

The compiler algorithm looks at the data accesses in terms of the cache blocks. There may

be multiple scalar variables assigned to the same block, but this information is generally not

available at compile time. But, in some cases, it can be obtained using alignment analysis

in the compiler. The compiler algorithm focuses on statically or dynamically allocated

array variables and they are called kill candidate variables. Some group of scalar variables

that are allocated in contiguous memory locations (e.g., local variables of a procedure) are

also considered as kill candidate variables. In order to compute the reuse distance for a

cache block, the number of distinct blocks mapping to the same set as the cache block is

required. This requires information about the data layout, which the compiler does not

typically have. This makes the computation of reuse distances infeasible. An alternative is

to compute the total number of distinct blocks (footprint) between the two accesses of the
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same block and if the footprint is above some threshold, then the first access of the cache

block can be assigned a kill predicate instruction/annotation. The footprint computation

requires the information about data sizes, values of input parameters that determine the

control flow and the number of iterations, etc. The compiler can compute the footprint

functions in terms of constants and input parameters and use a kill predicate instruction

based on conditional expression at run-time. The steps for a compiler algorithm to identify

and assign kill predicates are:

1. Perform the pointer analysis to identify the references that refer to the same variables.

This analysis identifies memory references that would refer to the same cache blocks.

2. Perform life-time analysis on variables in the program, and identify the last use of

all variables in the program. Associate an appropriate kill predicate instruction (e.g.,

STC DRNG KPRED) for these references.

3. If sufficient information is available to compute a reuse distance d between two tem-

porally adjacent pair of references to the kill candidate variables, then determine the

lower bound on the reuse distance d for each such pair.

For a given pair of references to a kill candidate variable, the number of accesses to

distinct blocks mapping to the same set is determined for each control path and a

minimum value along these paths is chosen as the value d.

For kill candidate variables, if any adjacent pair of references has d ≥ m, where m

is the associativity of the cache, associate a kill predicate instruction with the first

reference.

4. Otherwise, compute the minimum footprint between each temporally-adjacent pair of

references to the kill candidate variables. If the minimum footprint is greater than

the data cache size, then the first reference is assigned a kill predicate instruction.

5. If the footprint function cannot be determined fully then a conditional expression is

used to conditionally execute the kill predicate instruction at run-time. For exam-

ple, a footprint function f(N), where N is the number of iterations, and if f(N) >

CacheSize for N ≥ 100, then a kill predicate instruction is executed conditionally

based on the value of the conditional expression N ≥ 100 at run-time.
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The above compiler algorithm has not been implemented in a compiler. But a profile-

based algorithm for the software-assisted approach uses some input data independent pro-

gram information that can also be derived using the compiler analysis. The profile-based

algorithm is inspired by the above algorithm and can approximate some aspects of the

compiler algorithm using some hardware structures.

In the following profile-based algorithm, the static and data-dependent information

about the program is derived using a profile run and used to obtain annotations for evalu-

ation using simulation. The kill predicates are determined in hardware but with software

assistance in the form of some annotations. The steps for the profile-based algorithm are:

• Run the target program on an input data set and collect input data independent

information: type of load/store instruction, loop boundary markers, etc.

• Generate an annotation table for the program information to be incorporated into

the simulator. The annotation table is a PC-based annotation table. Additional

instructions are incorporated and used in simulation using PC-based entries in the

annotation table.

• Simulate the program run on the same input data set or a different data set. Sim-

ulation uses the annotations to generate Kill predicates and updates the annotation

table dynamically.

The profile-based algorithm uses some aspects of the compiler algorithm. Instead of

static analysis, profile-based analysis is performed. Some of the static information is ob-

tained or derived through the application runs on the test, train, and reference inputs. The

profile information gathered is data-dependent or data-independent. The data-independent

information is static in nature, e.g., load/store type, loop backward branch targets, loop

end marker branches. The data-dependent information may vary with inputs, but can pro-

vide the information about the relative variations, e.g., reuse distance information for a

block above some threshold, condition for marking cache blocks for replacement, last use of

variables.

The information obtained using the profile-based analysis is used in deciding whether to

use a hint with a load/store instruction or use a range-based instruction at the annotation

points (loop boundaries). The decision to assign a hint to a load/store instruction is based
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on how predictable the replacement condition is for the dynamic instances of the load/store

instruction. If a load/store instruction is to be assigned a hint, then the type of hint

is selected for the load/store instruction. The range instruction is chosen for the cases

that cannot be captured by load/store hints and where range instruction can specify the

condition for a group of load/store instructions. The profile-based annotations can lead

to small overhead in terms of the static code size, fetch and issue bandwidth, and the

instruction cache.

4.5 Keep with Kill+LRU Replacement

In order to use Keep with Kill+LRU replacement, the information about the Keep data

blocks needs to be determined and conveyed to the hardware logic. The Keep information

can be determined using compiler analysis or profiled-based analysis. The information can

be conveyed to the hardware in the form of hints or additional instructions.

The compiler analysis that determines Keep data blocks can use three types of informa-

tion: data types, data block usage patterns, and reuse distance information to determine

the Keep variables. The data types and data block usage patterns may imply that it is

beneficial to keep certain data blocks temporarily in the cache. A reuse distance threshold

can also be used to help in determining the Keep variables. The information about the keep

variables is conveyed to the hardware either as hints that are part of load/store instructions

or Keep range instructions which specify the data address ranges for the Keep variables. The

keep range instruction implementation is similar to kill range implementation as described

in Section 4.4.1.

The Keep with Kill+LRU replacement has not been implemented, but the algorithm to

determine the Keep data blocks can be implemented in a compiler along with the algorithm

for the Kill+LRU replacement. The results presented later are based on the Keep variables

being determined statically and conveyed to hardware using the annotations for the Keep

data blocks.

Keep Range and Cache Line Locking

The use of a keep range instruction is better than cache line locking because in cache line

locking the data space is reserved in the cache and less space is available to the other
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data. The cache space need to be released later to be used by other data. The keep range

instruction allows for different data ranges to be specified in different phases based on the

changing requirements of the different phases of an application.

4.6 Prefetching with Kill+LRU Replacement

Any prefetching scheme can be combined with the Kill+LRU replacement policy. The

two ways to combine prefetching with the Kill+LRU replacement are considered here. One

approach keeps the prefetching scheme independent of the Kill+LRU replacement by issuing

the prefetches independent of the availability of killed blocks in the target cache set. But,

the prefetched block replaces a killed block if available, otherwise it replaces the LRU

block. The other approach controls prefetching by issuing prefetches only when there is

killed data available and replacing only a killed block when the prefetched block is brought

into the cache. If there is no killed block available when the prefetched block arrives, it

is discarded. There are certain performance guarantees in terms of misses can be made

for the two Kill+LRU and prefetching combinations. A hardware view of prefetching with

Kill+LRU replacement is shown in Figure 4-6. A hardware prefetching scheme is considered

in combination with the Kill+LRU replacement policy as described in the following section.
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Hardware Prefetching

A tagged hardware prefetching scheme is used here. In the n-block lookahead tagged hard-

ware prefetching scheme, upon a cache miss to a cache block b, n cache blocks following the

block b are prefetched into the cache if they are not already in the cache. When the LRU

replacement is used, the prefetched block replace the LRU cache block and the prefetched

cache block becomes the MRU cache block. The last prefetched block is tagged, if it is

not already in the cache. If there is a hit on a tagged block, the tag is removed from the

block and the next block address is prefetched. We now give some details pertaining to the

hardware implementation of the prefetching method. Generating the new addresses for the

blocks is trivial. Before a prefetch request is made for a block, the cache is interrogated to

see if the block is already present in the cache. This involves determining the set indexed

by the address of the block to be prefetched. If this set contains the block the prefetch

request is not made.

Predictor-based Prefetching

A hardware prefetching scheme that uses stride prediction can be used effectively in com-

bination with the Kill+LRU replacement. The stride prefetching scheme considered here

uses a hardware structure called Reference Prediction Table (RPT) to predict the strides

in the data memory addresses accessed by the load/store instructions. When a load/store

misses in the cache, and if the stride prediction is available, in addition to the missed block

the next block based on the stride is prefetched into the cache.

The RPT maintains the access stride information about active load/store instructions.

The RPT can be a direct-mapped table or a set-associative table indexed by load/store

PC address information. Each RPT entry maintains the last address accessed by the PC

corresponding to the RPT entry, stable stride flag, and stride value. Upon a data access,

RPT is checked and if the load/store PC entry does not exist, then it is created with the last

access address. When the same PC initiates another access, the last address is subtracted

from the current address to determine the stride and it is stored in the RPT entry for the

PC. When the same stride is computed the second time, it is considered stable and can be

used in predicting the address for prefetching.
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Prefetch Correlation with Kill+LRU Replacement

The use of hardware-based prefetching or predictor-based prefetching with Kill+LRU re-

placement decouples the prefetching approach from the Kill+LRU replacement. The prefetch-

ing of cache blocks can be correlated with the Kill+LRU replacement and can be imple-

mented in the form of a Kill+Prefetch engine. This engine integrates the functions for

the Kill+LRU and prefetching by correlating prefetches with the killed blocks or kill predi-

cates. For example, when using the software-assisted approach, the kill predicate instruction

PRGM LDST KPRED is used in combination with the prediction-based prefetching using

the RPT. The RPT determines the prefetch address and the same table structure can be

used to predict the dead blocks when the dead block information is associated with the

load/store instructions. So, when a dead block condition is satisfied in an RPT entry for

a load/store instruction, the same entry contains the information about the next prefetch

address.
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Chapter 5

Disjoint Sequences and Cache

Partitioning

5.1 Introduction

Given two memory address sequences, they are disjoint if there is no common address

between the two address sequences. Any address sequence can be considered as a merged

address sequence of one or more disjoint address sequences. So, when an address sequence

is applied to a cache, the whole cache space is shared by the elements of the applied address

sequence.

In this chapter, I provide a theoretical basis for improving the cache performance of

programs by applying the notion of disjoint sequences to cache partitioning. I prove the-

orems that show that if a program’s memory reference stream can be reordered such that

the reordered memory reference stream satisfies a disjointness property, then the reordered

memory reference stream is guaranteed to have fewer misses for the cache so long as the

cache uses the LRU replacement policy. To elaborate, if a memory reference stream R12 can

be reordered into a concatenation of two memory reference streams R1 and R2 such that

R1 and R2 are disjoint streams, i.e., no memory address in R1 is in R2 and vice versa, then

the number of misses produced by R12 for any cache with LRU replacement is guaranteed

to be greater than or equal to the number of misses produced by the stream R1@R2, where

@ denotes concatenation. Thus, reordering to produce disjoint memory reference streams

is guaranteed to improve performance, as measured by cache hit rate.
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5.2 Theoretical Results

The theoretical results presented here form the basis of the cache partitioning approach

explored in this thesis.

5.2.1 Definitions

Let R1 and R2 be two disjoint reference sequences merged without re-ordering to form

a sequence S. That is, S is formed by interspersing elements of R2 within R1 (or vice

versa) such that the order of elements of R1 and R2 within S is unchanged. For example,

consider the sequence R1 = a, b, a, c and R2 = d, d, e, f . These sequences are disjoint, i.e.,

they do not share any memory reference. The sequence S can be a, d, d, b, e, a, c, f but not

a, d, d, a, b, c, e, f because the latter has reordered the elements of R1.

Let R
′

1
be the R1 sequence padded with the null element φ in the position where R2

elements occur in S such that ‖ S ‖=‖ R
′

1
‖= N . If S = a, d, d, b, e, a, c, f then R

′

1
=

a, φ, φ, b, φ, a, c, φ. So, based on the above description, if S(x) ∈ R1 then S(x) = R
′

1
(x). I

define the null element φ to always result in a hit in the cache.

Let C(S, t) be the cache state at time t for the sequence S. Let C(R
′

1
, t) be the cache

state at time t for the sequence R
′

1
. There are no duplicate elements in a cache state. Let

the relation X � Y indicate that X ⊆ Y and the order of the elements of X in Y is same as

the order in X. For example, if X = {a, b, e} and Y = {f, a, g, b, h, e} then X � Y because

X ⊆ Y and the order of a, b, and e in Y is the same as the order in X.

For a direct-mapped cache C is an array; for a fully associative cache with an LRU

policy C is an ordered set; and for a set-associative cache with the LRU policy C is an

array of ordered sets.

For the following theorems in Section 5.2.2 and Section 5.2.3 it is assumed that the

reference sequence element size is 1 word and the cache line size is also 1 word.

5.2.2 Disjoint Sequence Merge Theorem

Theorem 1: Given a cache C with an organization (direct mapped, fully-associative or set-

associative) and the LRU replacement policy, and two disjoint reference sequences R1 and

R2 merged without re-ordering to form a sequence S. The number of misses m1 resulting

from applying the sequence R1 to C ≤ the number of misses M resulting from applying the
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sequence S to C.

Sketch of the proof: Let m
′

1
be the number of misses of R1 in S. Let m

′

2
be the number of

misses of R2 in S. So, M = m
′

1
+m

′

2
is the total number of misses in S. For a direct-mapped

cache I show by induction that for any time t, 0 ≤ t ≤ N , C(S, t)∩R1 ⊆ C(R
′

1
, t). For a fully-

associative cache I show by induction that for any time t, 0 ≤ t ≤ N , C(S, t)∩R1 � C(R
′

1
, t).

For a set-associative cache I show by induction that for any time t, 0 ≤ t ≤ N , 0 ≤ i ≤ p−1,

C(S, t)[i] ∩ R1 � C(R
′

1
, t)[i], where p is the number of ordered sets in the set-associative

cache. This implies that if an element of R1 results in a miss for the sequence R
′

1
it would

result in a miss in the sequence S. So, I have m1 ≤ m
′

1
and by symmetry m2 ≤ m

′

2
. So,

m1 + m2 ≤ m
′

1
+ m

′

2
or m1 + m2 ≤ M . Thus I have m1 ≤ M and m2 ≤ M .

Direct Mapped Cache

I show that for any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 ⊆ C(R
′

1
, t). Every element e maps to

an index Ind(e) that can be used to lookup the element in the cache state C.

For t = 0, C(S, 0) ∩ R1 ⊆ C(R
′

1
, 0).

Assume for time t, C(S, t) ∩ R1 ⊆ C(R
′

1
, t).

For time t+1, let f = S(t+1) and let i = Ind(f) and let e = C(S, t)[i] and let x = C(R
′

1
, t)[i].

Case 0 (hit): The element f results in a hit in C(S, t). So, e ≡ f and C(S, t+1) = C(S, t).

If f ∈ R1, R
′

1
(t + 1) ≡ f and from the assumption at time t, C(R

′

1
, t)[i] ≡ f . Since the

element f results in a hit in C(R
′

1
, t), C(R

′

1
, t + 1) = C(R

′

1
, t). So, C(S, t + 1) ∩ R1 ⊆

C(R
′

1
, t+1). If f ∈ R2, then R

′

1
(t+1) ≡ φ and C(R

′

1
, t+1) = C(R

′

1
, t). So, C(S, t+1)∩R1 ⊆

C(R
′

1
, t + 1).

Case 1 (miss): The element f results in a miss in C(S, t) and f ∈ R2 and e ∈ R1. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. This implies that

C(S, t + 1) ∩R1 ⊆ C(S, t) ∩R1. The element R
′

1
(t + 1) ≡ φ so C(R

′

1
, t + 1) = C(R

′

1
, t). So,

C(S, t + 1) ∩ R1 ⊆ C(R
′

1
, t + 1).

Case 2 (miss): The element f results in a miss in C(S, t) and f ∈ R2 and e ∈ R2. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. This implies that

C(S, t + 1) ∩R1 ≡ C(S, t) ∩R1. The element R
′

1
(t + 1) ≡ φ so C(R

′

1
, t + 1) = C(R

′

1
, t). So,
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C(S, t + 1) ∩ R1 ⊆ C(R
′

1
, t + 1).

Case 3 (miss): The element f results in a miss in C(S, t) and f ∈ R1 and e ∈ R1. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. The element

R
′

1
(t + 1) ≡ f from the construction of S and R

′

1
. The new cache state for the sequence

R
′

1
is C(R

′

1
, t + 1) = C(R

′

1
, t) − {x} ∪ {f}. From the assumption at time t x ≡ e. So,

C(S, t + 1) ∩ R1 ⊆ C(R
′

1
, t + 1).

Case 4 (miss): The element f results in a miss in C(S, t) and f ∈ R1 and e ∈ R2. The

new cache state for the sequence S is C(S, t + 1) = C(S, t) − {e} ∪ {f}. The element

R
′

1
(t + 1) ≡ f from the construction of S and R

′

1
. The new cache state for the sequence

R
′

1
is C(R

′

1
, t + 1) = C(R

′

1
, t) − {x} ∪ {f}. Since e ∈ R2 and the assumption at time t,

(C(S, t) − {e}) ∩ R1 ⊆ (C(R
′

1
, t) − {x}). So, C(S, t + 1) ∩ R1 ⊆ C(R

′

1
, t + 1).

Fully-associative Cache

Lemma 1: Let C(S, t) = {L, y}, where L is an ordered subset of elements and y is the

LRU element of C(S, t). Let C(R
′

1
, t) = {M, z}, where M is an ordered subset of elements

and z is the LRU element of C(R
′

1
, t). If y ∈ R2, then z 6∈ L.

Proof: Based on the construction of R
′

1
and S, if M is not null, the last reference of z in

both the sequences should occur at the same time t1 < t and between t1 and t the number

of distinct elements in R
′

1
≤ the number of distinct elements in S. If M is null, then there

is only one element in C at time t because we have referenced z over and over, so t can be

anything but t1 = t and the number of distinct elements following z in R
′

1
= 0 as in S. Let

‖ C ‖= c. For C(R
′

1
, t) = {M, z}, let the number of distinct elements following z be n. Since

z is the LRU element in C(R
′

1
, t), n = c− 1. Let us assume that z ∈ L. Let L = {L1, z, L2}

and ‖ L1 ‖= l1, ‖ L2 ‖= l2, ‖ L ‖= c − 1. For C(S, t) = {L, y} = {L1, z, L2, y}, let the

number of distinct elements following z be m and m = l1. So, m < c − 1. So, m < n and

that contradicts the assertion on the number of distinct elements. Therefore, z 6∈ L.

I show that for any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 � C(R
′

1
, t).

For t = 0, C(S, 0) ∩ R1 � C(R
′

1
, 0).

Assume for time t, C(S, t) ∩ R1 � C(R
′

1
, t).
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For time t + 1, let x = S(t + 1).

Case 0 (hit): x ∈ R1 and x results in a hit in C(S, t). Let C(S, t) = {L1, x, L2}, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S, t + 1) =

{x,L1, L2}. Let C(R
′

1
, t) = {M1, x,M2}, where M1 and M2 are subsets of ordered elements.

C(R
′

1
, t+1) = {x,M1,M2}. From the assumption at time t, {L1, x, L2}∩R1 � {M1, x,M2}.

So, {L1} ∩ R1 � {M1} and {L2} ∩ R1 � {M2}. Thus {L1, L2} ∩ R1 � {M1,M2}. So,

C(S, t + 1) ∩ R1 � C(R
′

1
, t + 1).

Case 1 (hit): x ∈ R2 and x results in a hit in C(S, t). Let C(S, t) = {L1, x, L2}, where L1

and L2 are subsets of ordered elements. The new state for the sequence S is C(S, t + 1) =

{x,L1, L2}. From the construction of R
′

1
, R

′

1
(t + 1) ≡ φ and C(R

′

1
, t + 1) = C(R

′

1
, t). Since

x ∈ R2, C(S, t + 1) ∩ R1 ≡ C(S, t) ∩ R1. So, C(S, t + 1) ∩ R1 � C(R
′

1
, t + 1).

Case 2 (miss): x ∈ R2 and x results in a miss in C(S, t) and the LRU element y ∈ R2.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element

of C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. Since x ∈ R2 and

y ∈ R2, C(S, t + 1) ∩ R1 ≡ C(S, t) ∩ R1. From the construction of R
′

1
, R

′

1
(t + 1) ≡ φ and

C(R
′

1
, t + 1) = C(R

′

1
, t). So, C(S, t + 1) ∩ R1 � C(R

′

1
, t + 1).

Case 3 (miss): x ∈ R2 and x results in a miss in C(S, t) and the LRU element y ∈ R1.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element

of C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. Since x ∈ R2 and

y ∈ R1, C(S, t + 1) ∩ R1 � C(S, t) ∩ R1. From the construction of R
′

1
, R

′

1
(t + 1) ≡ φ and

C(R
′

1
, t + 1) = C(R

′

1
, t). So, C(S, t + 1) ∩ R1 � C(R

′

1
, t + 1).

Case 4 (miss): x ∈ R1 and x results in a miss in C(S, t) and the LRU element y ∈ R2.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element of

C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. From the construction

of R
′

1
, R

′

1
(t + 1) ≡ x. Let C(R

′

1
, t) = {M, z}, where M is a subset of ordered elements.

The new state for the sequence R
′

1
is C(R

′

1
, t + 1) = {x,M}. From Lemma 1, z 6∈ L. So,

{x,L} ∩ R1 � {x,M}. So, C(S, t + 1) ∩ R1 � C(R
′

1
, t + 1).

Case 5 (miss): x ∈ R1 and x results in a miss in C(S, t) and the LRU element y ∈ R1.

Let C(S, t) = {L, y}, where L is a subset of ordered elements and y is the LRU element of
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C(S, t). The new state for the sequence S is C(S, t + 1) = {x,L}. From the construction

of R
′

1
, R

′

1
(t + 1) ≡ x. Since y ∈ R1, the LRU element of C(R

′

1
, t) is also y due to the

assumption at time t. Let C(R
′

1
, t) = {M,y}, where M is a subset of ordered elements.

The new state for the sequence R
′

1
is C(R

′

1
, t + 1) = {x,M}. From the assumption at time

t, {L} ∩ R1 � {M}. Thus, {x,L} ∩ R1 � {x,M}. So, C(S, t + 1) ∩ R1 � C(R
′

1
, t + 1).

Set-associative Cache

Assume that there are p ordered sets in C that can be referred as C[0], ..., C[p − 1]. Every

element e maps to an index Ind(e) such that 0 ≤ Ind(e) ≤ p− 1 that is used to lookup the

element in the ordered set C[Ind(e)]. I show for 0 ≤ t ≤ N , 0 ≤ i ≤ p− 1, C(S, t)[i]∩R1 �

C(R
′

1
, t)[i].

For t = 0, 0 ≤ i ≤ p − 1, C(S, 0)[i] ∩ R1 � C(R
′

1
, 0)[i].

Assume for time t, 0 ≤ i ≤ p − 1, C(S, t)[i] ∩ R1 � C(R
′

1
, t)[i].

For time t + 1, let x = S(t + 1), and j = Ind(x).

For i 6= j (0 ≤ i ≤ j − 1 and j + 1 ≤ i ≤ p − 1), C(S, t + 1)[i + 1] = C(S, t)[i + 1] and

C(R
′

1
, t + 1)[i + 1] = C(R

′

1
, t)[i + 1] because the element x does not map in the ordered set

C[i]. So, C(S, t + 1)[i] ∩ R1 � C(R
′

1
, t + 1)[i].

For i = j using the assumption at time t and the proof for the fully-associative cache I have

C(S, t + 1)[i] ∩ R1 � C(R
′

1
, t + 1)[i].

Therefore, C(S, t + 1)[i] ∩ R1 � C(R
′

1
, t + 1)[i] for 0 ≤ i ≤ p − 1.

5.2.3 Concatenation Theorem

Theorem 2: Given two disjoint reference sequences R1 and R2 merged in any arbitrary

manner without re-ordering the elements of R1 and R2 to form a sequence S and given

the concatenation of R1 and R2 indicated by R1@R2, the number of misses produced by S

for any cache with the LRU replacement is greater than or equal to the number of misses

produced by R1@R2.

Proof: Let m1 indicate the number of misses produced by the sequence R1 alone and m2

indicate the number of misses produced by the sequence R2 alone. The number of misses

produced by R1@R2 is m1 + m2. Let M be the number of misses produced by S. I show

that m1 + m2 ≤ M . Let m
′

1
indicate the number of misses of R1 in S and let m

′

2
indicate
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the number of misses of R2 in S. In Section 5.2.2 (Direct Mapped Cache) I showed for

a direct-mapped cache that for any time t, 0 ≤ t ≤ N , C(S, t) ∩ R1 ⊆ C(R
′

1
, t) and in

Section 5.2.2 (Fully-associative Cache) I showed for a fully-associative cache that for any

time t, 0 ≤ t ≤ N , C(S, t)∩R1 � C(R
′

1
, t). In Section 5.2.2 (Set-associative Cache) I showed

for a set-associative cache by induction that for any time t, 0 ≤ t ≤ N , 0 ≤ i ≤ p − 1,

C(S, t)[i] ∩ R1 � C(R
′

1
, t)[i], where p is the number of ordered sets in the set-associative

cache. This implies that if an element of R1 results in a miss for the sequence R
′

1
it would

result in a miss in the sequence S. Thus, m1 ≤ m
′

1
. By symmetry, I have m2 ≤ m

′

2
. So,

m1 + m2 ≤ m
′

1
+ m

′

2
or m1 + m2 ≤ M , where M = m

′

1
+ m

′

2
is the total number of misses

in S. Therefore, the number of misses M produced by S is greater than or equal to the

number of misses m1 + m2 produced by R1@R2.

5.2.4 Effect of Memory Line Size

For the theorems above in Section 5.2.2 and Section 5.2.3 it was assumed that the reference

sequence element size is 1 word and the cache line size is also 1 word. For a given line

size, if the sequences are defined such that the elements of the sequences are on cache line

boundaries, then the disjoint sequence theorem still holds. So, if the reference sequence

element size is equal to the cache line size and the reference elements are aligned to the

cache line boundaries, the above theorems still hold. For example, consider a cache line size

of 4 words and the element size of 4 words (quad-word). If the elements are aligned on the

cache line boundaries, the addresses of the sequence elements would consist of the cache

line aligned addresses (e.g., 0xaaaabbb0, 0xaaaaccc0). This implies that any reordering

of elements is on cache line boundaries and there is one to one correspondence between an

element and a cache line. The effect is the same as that for the cache line size of 1 word and

the element size of 1 word assumption of the disjoint sequences theorem. So, the disjoint

sequences theorem would hold for the above example.

If the elements in sequences are aligned for a cache line size L, then the theorem holds

for any line size ≤ L. For example, if the elements are aligned for 4 words, the theorem

would hold for cache line sizes 4, 2, and 1 word.

For an arbitrary cache line size, the disjoint sequence theorem cannot be applied because

the sequences that are disjoint for one cache line size l may not be disjoint for a cache line

size l′ > l.
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5.3 Partitioning with Disjoint Sequences

The notion of disjoint sequences can be applied to cache partitioning. In this approach,

the cache space is divided into cache partitions and the address sequence is divided into

disjoint set of groups. Each group consists of a merge sequence of one or more disjoint

address sequences. One or more groups are mapped to each cache partition and the ad-

dresses belonging to a group can replace only those addresses belonging to the same group.

Cache partitioning reduces the effective cache size available to different groups of disjoint

sequences. The overall hit rate depends on the potential increase self-interference within the

groups due to smaller cache space and decrease in the cross-interference from other groups

of addresses. The hit rate guarantees as compared to the LRU replacement policy over the

whole cache space hold under certain conditions as described in Section 5.3.2.

5.3.1 Non-Disjointness Example

Assume a two word cache C. Assume that the sequences have read accesses only. Consider

a merged sequence S = {1.a 2.b 3.b 4.c 5.c 6.a 7.a 8.b}. Now consider the sequence divided

into two sequences one going to cache C1 and the other going to cache C2, where C1 and

C2 are same size caches as C. The results for various cases are shown in Table 5.1. If the

divisions of the sequence are not disjoint, it results in total of 8 misses. On the other hand,

if the sequence divisions S1 and S2 are disjoint and assigned to caches C1 and C2, it results

in total of 3 misses. If the sequence S is applied to the cache C, it results in a total of 5

misses. Now, if C is partitioned into two one-word partitions, then it results in a total of 4

misses. So, the partitioning of the cache C based on disjoint sequences S1 and S2 saves one

miss compared to the case of the sequence S being mapped to cache C.

5.3.2 Two Sequence Partitioning Example

Given two sequences, s1 and s2, with the number of accesses n1 and n2 let the number of

misses of these sequences total m for cache size C. If used individually, the number of misses

are m1 and m2. I have m1 + m2 ≤ m. Now if f is the fraction of the cache C assigned to

S1, then the goal is to find f such that mfs1 + mfs2 ≤ m. That is, the sum of the number

of misses mfs1 of s1 for the size f*C and number of misses mfs2 of s2 for the size (1-f)*C is

≤ m. If footprint(s1)+footprint(s2) ≤ C, then m1+m2=m. Otherwise, m1+m2 ≤ m and
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Non-disjoint Sequences

C1: 1.a 2.b 4.c 6.a
miss miss miss miss

C2: 3.b 5.c 7.a 8.b
miss miss miss miss

Total Misses = 8

Disjoint Sequences {a} {b, c}

C1: 1.a 6.a 7.a
miss hit hit

C2: 2.b 3.b 4.c 5.c 8.b
miss hit miss hit hit

Total Misses = 3

Only One Cache With Two Words

C: 1.a 2.b 3.b 4.c 5.c 6.a 7.a 8.b
miss miss hit miss hit miss hit miss

Total Misses = 5

One Word Partition for Each Sequence

Cp1: 1.a 6.a 7.a
miss hit hit

Cp2: 2.b 3.b 4.c 5.c 8.b
miss hit miss hit miss

Total Misses = 4

Table 5.1: Non-disjoint Sequences Example

let m = m1+m2+mi, where mi are the interference misses. For a given partition, if mp1 =

m1 + mi1 and mp2 = m2 + mi2, then the condition required is: mi1 + mi2 <= mi given

the curves for both the sequences of number of misses vs cache size. For a solution to be

feasible, there should be a cache size c1 and c2 such that mc1 < m1 + mi, mc2 < m2 +

mi, and c1 + c2 <= C. Or the superimposed curves have a point in the range m1+m2 : m.

5.3.3 Partitioning Conditions

The condition for a partitioning based on disjoint sequences to be as good as or better

than LRU is derived here. Assuming a Modified LRU replacement policy as a partitioning

mechanism. Given a set of sequences S1, S2, ..., Sn, and a fully-associative cache C. Assume

the cache partitions C1 and C2 where S1 is assigned to C1 and S2, ..., Sn are assigned to

C2. There will not be any additional misses in the partitioning based on C1 and C2, if the
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Figure 5-1: Two Sequence Partitioning

following statement holds for both the partitions:

Whenever a Kl bit can be set in C1 or C2 based on their sizes, it can also be set in C

for S. This means that whenever an element is replaced from a partition, it would also be

replaced in the case where the merged sequence was applied to the whole cache.

In terms of the reuse distances, whenever the reuse distance of an element in the sequence

S1 (S2) is ≥ C1 (≥ C2), then the reuse distance for the same element in S is ≥ C. This

means that whenever the reuse distance of an element is greater than the partition size, its

reuse distance in the merged sequence is greater than the full cache size.

5.4 Information for Partitioning

There are different types of information that can be gathered and used in cache partitioning

based on disjoint sequences. For example, the information about a sequence can be the

footprint for the sequence, the cache usage efficiency for the sequence, or the reuse distance

information for the sequence.

5.4.1 Cache Usage

The cache usage increases and the conflict misses reduce as the associativity increases for

the same number of sets. There are different ways to measure the cache usage information
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of the sequences, namely,

• H/(M*b), where H is the number of hits and M is the number of misses and b is the

block size, or

• the percentage of words used in a cache line (H*(percentage of b)/(M*b)).

The cache usage information provides a metric to measure the effect of cache partitioning

on the sequences’ average use of the cache lines on a miss.

5.4.2 Sequence Footprints

The footprint size of a sequence gives an indication of the active cache lines of the sequence

in the cache. Some profile information can be used as a footprint indicator to estimate the

relative footprint sizes of the sequences.

5.4.3 Sequence Coloring

There are different ways to determine number of sequences for partitioning and the con-

stituents of the sequences. The sequences may consist of different address ranges or load/store

instructions. The sequences are combined into groups by sequence coloring. The groups

are mapped to a cache partition. The information for sequence coloring consists of:

• usage pattern classes (they can be associated with the access method),

• random accesses with asymptotic footprint of certain size with certain usage efficiency,

and

• stride-based accesses with usage efficiency less than some number and reuse distance

more than some number.

The load/store instructions can be classified according to their cache line usage and

strides of accesses. This load/store classification information gives an indication of the

sharing possible. The load/store classification information can be obtained statically or

dynamically.
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Sequence Coloring Information

The cache lines are divided into groups and each group has some partitioning information

associated with it. Some cache lines may not be part of any group. Each group is assigned

a code that is used to maintain partitioning information and to make replacement decisions.

There are three types of partitioning information considered for each group:

• exclusive flag: when this flag is set for a group g, it indicates that only the cache

lines belonging to group g can replace a cache line in group g. This partitioning

information requires some way of resetting this flag to release the cache lines from

this restriction.

• minimum size: this value for a group specifies the minimum number of cache lines

per set for that group. This requires some way of avoiding locking the whole cache.

• maximum size: this value for a group specifies the maximum number of cache lines

per set for that group.

5.5 Static Partitioning

The cache partitioning should improve the hit rate compared to the unpartitioned cache

using the LRU replacement policy. So, the goal is to reduce the misses for the groups of

sequences. If the cost of self-interference is smaller than the cross interference then choose

the self-interference that reduces the sharing among other sequences. The groups would get

the cache partition size that is not going to increase their miss rate when compared to the

case where the group was sharing the whole cache space with the other sequences.

5.5.1 Algorithm

Given a number of sequences, determine the grouping of sequences along with the partition

sizes for the groups such that number of misses is minimized and the partition sizes add up

to the cache size. The function estimate misses uses the information about the sequences

in the group, the interleaving of sequences, and the group partition size to estimate the

misses. The algorithm partitions recursively assuming two partitions (2) and the sizes of

the partitions are variable in the steps of the granularity of partitioning.
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max misses = INF
sol g1 = {}
sol g2 = {}

cluster nodes(G, g1, g2) {
if (G not empty) {
nd = select node(G); /* smallest sum of edge weights */
g1’ = assign node(nd, g1);
cluster nodes(G-{nd}, g1’, g2);
g2’ = assign node(nd, g2);
cluster nodes(G-{nd}, g1, g2’);

}
else {
m g1 = estimate misses(g1);
m g2 = estimate misses(g2);
if (m g1+m g2 < max misses) {
sol g1 = g1;
sol g2 = g2;

}
}

}

Figure 5-2: Clustering Algorithm

1. For each partition size pair, construct a Sequence Interaction Graph and Cluster the

sequence nodes into two groups using the Clustering Algorithm shown in Figure 5-2.

2. Choose the partition size pair with the minimum estimated misses.

3. If a partition in the chosen pair contains more than one sequence, recursively partition

the partitions in the pair.

Example

Consider six sequences S1, S2, S3, S4, S5, S6. Start with two partitions 1/4 C and 3/4

C.

a. {S1} -> P1 = (1/4 C),

{S2, S3, S4, S5, S6} -> P2 (3/4 C)

b. {S2, S3} -> P2_1 (1/4 C),

{S4, S5, S6} -> P2_2 (1/2 C)

Start with 1/2 C and 1/2 C and Clustering should lead to:
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Figure 5-3: Hardware Support for Flexible Partitioning

a. {S1, S2, S3} -> P1 (1/2 C),

{S4, S5, S6} -> P2 (1/2 C) then

b. {S1} -> P1_1 (1/4 C),

{S2, S3} -> P1_2 {1/4 C},

{S4, S5, S6} -> P2 (1/2 C)

5.5.2 Hardware Support

Modified LRU Replacement

The way-based partitioning is implemented using a modified LRU replacement algorithm.

The replacement algorithm is a modified LRU replacement algorithm with the cache line

group partitioning information. On a hit in a cache set, the cache lines in the set are

reordered according to the LRU ordering of the cache lines in the accessed set. On a miss

in a cache set, the partitioning information for the missed cache line group is checked from

the group partitioning information table. If the minimum size is specified, and the number

of cache lines belonging to the missed cache line’s group are less than the minimum, then

a cache line from other group is replaced. Otherwise, if the maximum size is specified and

the current number of cache lines is equal to the maximum size, then the new cache line

replaces the LRU cache line in the same group. Otherwise, a cache line from other group
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Figure 5-4: Cache Tiles for Cache Partitioning

is replaced. When a cache line from other group is chosen, the priority is to use the LRU

cache line, without exclusive flag or minimum size violation.

There is a group partitioning information table which stores the information about the

current groups. Also, each cache line has group code bits. The LRU replacement logic is

modified to incorporate the changes from the LRU replacement algorithm. There are also

some state bits to get the group of the cache line on an access and there are two ways to

communicate it to the hardware: 1) using data address ranges or 2) load/store annotations.

The hardware support for flexible cache partitioning is shown in Figure 5-3.

Cache Tiles

The above approach for partitioning is based on way-based horizontal partitioning, i.e., the

partitions are controlled using the number of cache lines for different groups in a cache

set. The other way of partitioning is set-based vertical partitioning where number of sets

are used to control the partitioning for the cache lines of different groups. If both ways of

controlling the partitions are used, then the partitions are called cache tiles.

One way to approximate the set-based vertical partitioning is based on the observation

that the high order bits in the tag do not change much compared to the low order bits. One

simple way to implement the set-based vertical partitioning is to swap some high order bits

of the tag with high order bits of the index. For example, take the p tag bits (starting from
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some fixed position) and use them as the upper p bits of the index to the cache and store

the unused p index bits as part of the tag. The value p is stored for each cache line as well.

When the cache lines are read, the tags are matched appropriately. To specify the partition

size associated with an address, a load/store instruction with value p is used. The set-based

partitioning is illustrated in Figure 5-4. This can be combined with way-based partitioning

shown in Figure 5-3. However, there are several issues associated with this approach that

need be dealt with to use this approach with disjoint sequences, and we will not explore

this further in this thesis.

Multi-tag Sharing

The cache line usage in terms of the number of words in a cache line used before its eviction

may vary for different groups. If the cache line usage is low, then the data words of a cache

line can be shared by more than one cache line address. The sharing is achieved using

multiple tags for the cache line data words. This is in a sense restricting the space allowed

for the conflicting cache line addresses that would not use all the space in the cache line.

A multi-tag based sharing of data word space of cache lines can be used to achieve sharing

among sequences. This approach may use the ideas of rotating tags, differential tags, and

distinct tags to reduce the multi-tag overhead and to maintain the same latency of accesses.

Some details of these ideas are given in Section A.3

5.5.3 Software Support

The groups for partitioning need to be defined along with the partitioning information.

I propose to use disjoint sequences to define the groups and the associated partitioning

information.

First, sequences need to be defined that would represent different groups. This can

be done using compiler analysis that identifies the variables with disjoint address ranges.

A collection of variables can be used as a group and when this group is accessed in the

program, it will form a sequence that is disjoint from other sequences.

Second, the partition size information needs to be determined for different groups. This

information can be derived using the footprint information and cache usage efficiency for

different groups and they can be estimated either by compiler or profile analysis. The size

of the partition that is not going to reduce the hit rate is given by the number of live blocks
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in the sequence. A group should be assigned the partition size that is not going to increase

its miss rate compared to the case where the group were to share the space with the other

groups. The miss rate would not increase, if the cost of self-interference is less than the cost

of cross-interference in terms of misses.

The above group definition and partition size assignment would approximate the result

of the disjoint sequence theorem. This derived information is incorporated into the pro-

gram using appropriate instructions or annotations to communicate this information to the

hardware support logic.

5.6 Hardware Cost

Each cache line will require the number of bits to indicate the code of the cache line.

Also, a table of the maximum number of cache lines for a given code. The replacement

logic would have to be modified to incorporate the changes from the LRU policy. For n

disjoint sequences, log2 n bits would be required to indicate the disjoint sequence for a cache

line. If there are m cache lines in the cache, then it would require m × (log2 n) additional

bits for the whole cache. There are two ways the disjoint sequence of an access can be

conveyed to the hardware. One way is that the disjoint sequence information is part of

the load/store instructions. In this case, each load/store instruction would require log2 n

bits to indicate the disjoint sequence. The other way is that the disjoint sequences are

indicated as disjoint address ranges. This would require n × 64 bits to store start and end

address of for each range. The partitioning table requires n × ((log2 a) + 1) bits for the

partitioning information, where a is the associativity of the cache. The number of bits

required to store the disjoint sequences information can be reduced using the number of

live sequences information. The live sequences information allows the disjoint sequence

numbers to be recycled as the program working set changes during the program execution.

The live sequences information can be derived using a program analysis. The modification

of the replacement logic would require some log2 a-bit adders and log2 n-bit comparators

and some small logic to read and write the partitioning information table.

For example, consider a 4-way 8K set associative cache with block size of 32 Bytes and

8 disjoint sequences for partitioning. There would be 3 bits of additional state bits with

each cache line, so there would be total 256 × 3 = 768 additional bits for the whole cache.
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The partition information table would require 8 × 3 = 24 bits to store the partitioning

information. If the disjoint address ranges are used, the address range information would

require 8 × 64 = 2048 bits, otherwise 3 bits with each load/store instruction would be

required to convey the disjoint sequence information.
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Chapter 6

Evaluation

In this chapter, we empirically evaluate the techniques presented in the previous chapters.

We first evaluate the intelligent cache replacement mechanism in Section 6.1. Next, in

Section 6.2, we evaluate how intelligent cache replacement can be used to control cache

pollution arising from an aggressive sequential hardware prefetching method. Finally, in

Section 6.3, we evaluate static cache partitioning schemes based on a strategy inspired by

the disjoint sequence theorem.

6.1 Intelligent Cache Replacement

For our experiments, we compiled some Spec95 benchmarks for a MIPS-like PISA processor

instruction set used by the Simplescalar 3.0 [11] tool set. We generated traces for the

benchmarks using Simplescalar 3.0 [11] and chose sub-traces (instruction + data) from

the middle of the generated trace. We used a hierarchical cache simulator, hiercache, to

simulate the trace assuming an L1 cache and memory. In our experiments, we measured the

L1 hit rate and the performance of some of the Spec95 benchmarks for various replacement

policies.

We describe our experiments using the Spec95 Swim benchmark as an example. We

chose a set of arrays as candidates for the kill and keep related experiments. The arrays

we considered were u, v, p, unew, vnew, pnew, uold, vold, pold, cu, cv, z, h, psi. These

variables constitute 29.15% of the total accesses. We did the experiment with different

associativities of 2, 4, 8 and cache line sizes of 2, 4, 8 words and a cache size 16K bytes. The

overall L1 hit rate results for the Swim benchmark are shown in Figure 6-1.
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In Figure 6-1, the x-axis a,b indicates the associativity and the cache line size in

words. The column labeled LRU shows the hit rate over all accesses (not just the ar-

ray accesses) with the LRU policy. The column labeled Kill shows the hit rate for the

Kill+LRU replacement policy. The columns labeled KK1, KK2, KK3 show the hit rate

for the Kill+Keep+LRU replacement policy with the Flexible Keep variation. In KK1, the

array variables unew, vnew, pnew are chosen as the keep candidates. In KK2, the array

variables uold, vold, pold are chosen as the keep candidates. In KK3, only the array vari-

able unew is chosen as the keep candidate. The hit rates of the variables of interest for

an associativity of 4 and a cache line size of 8 words are shown in Figure 6-2 for the same

columns as described above. The modified program with cache control instructions does

not have any more instruction or data accesses than the original program. In Figure 6-2,

the columns %Imprv show the percentage improvement in hit rate for the variables over the

LRU policy.

Figure 6-3 shows the number of Kill (labeled as #Kill) and Conditional Kill (labeled

as #Cond Kill) instructions generated corresponding the number of references (labeled as

#Ref) for the array variables of the Spec95 Swim benchmark.

The results show that the performance improves in some cases with the use of our

software-assisted replacement mechanisms that use kill and keep instructions. The results

in Figure 6-2 show that the hit rates associated with particular variables can be improved

very significantly using our method. The bold numbers in the KK1, KK2, and KK3 columns

in Figure 6-2 indicate the hit rate of the variables that were the only keep variables for

these columns. Choosing a particular variable and applying our method can result in an

substantial improvement in hit rate and therefore performance for the code fragments where

the variable is accessed. For example, for a variable vnew, the hit rate for LRU was 37.37,

but we could improve it to 75.86 using the Keep method. This is particularly relevant when

we need to meet real-time deadlines in embedded processor systems across code fragments,

rather than optimizing performance across the entire program.

Figure 6-4(a) shows the overall hit rate and performance for some Spec95 benchmarks.

We show hit rate and performance for a single-issue pipelined processor that stalls on a cache

miss. The number of cycles are calculated by assuming 1 cycle for instruction accesses and 1

cycle for on-chip memory and a 10 cycle latency for off-chip memory. The columns show hit

rate and number of cycles assuming 10 cycles for off-chip memory access and 1 cycle for on-
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Figure 6-1: Overall Hit Rates for the Spec95 Swim Benchmark (L1 Cache Size 16 KBytes)

chip memory access. The last column shows the performance improvement of Kill+Keep

over LRU. Figure 6-4(b) shows the overall worst-case hit rate and performance for the

same Spec95 benchmarks. The worst-case hit rate is measured over 10 sets of input data.

The columns show hit rate and number of cycles assuming 10 cycles for off-chip memory

access and 1 cycle for on-chip memory access. The last column shows the performance

improvement of Kill+Keep over LRU.

The programs that do not have much temporal reuse of its data (e.g., some integer

benchmarks) do not benefit from kill+LRU replacement in terms of the hit rate improve-

ment, but if the same programs have some data that can benefit by keeping some variables

in the cache, then the Kill+Keep strategy can help in improving the hit rates for the keep

variables without degrading performance.

6.2 Intelligent Cache Replacement and Prefetching

We first describe the hardware prefetch method we use in this section. Next, we present

results integrating trace-based ideal kill with the prefetch method in various ways. Finally,

we present results using compiler-inserted kills, and show that significant performance im-

provements can be gained while providing performance guarantees.
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Vars LRU Kill %Imprv KK1 %Imprv KK2 %Imprv KK3 %Imprv

u 85.94 88.57 3.06 86.47 0.62 86.32 0.44 86.67 0.84

v 83.13 88.13 6.01 84.37 1.49 84.20 1.28 86.86 4.49

p 84.24 87.93 4.37 85.42 1.39 84.27 0.03 86.75 2.97

unew 28.67 39.72 38.56 74.16 158.68 28.80 0.47 84.77 195.71

vnew 37.37 47.17 26.21 75.86 102.97 42.83 14.58 43.97 17.64

pnew 31.15 55.51 78.22 75.28 141.68 47.31 51.88 48.23 54.84

uold 42.62 50.78 19.15 47.59 11.67 67.74 58.95 47.59 11.66

vold 54.92 62.60 13.99 62.44 13.70 75.05 36.66 62.48 13.77

pold 47.35 59.25 25.13 55.55 6.41 71.41 33.56 55.71 6.65

cu 75.81 79.73 5.54 79.35 5.11 77.96 3.19 79.73 5.54

cv 75.75 82.15 10.28 82.15 10.21 81.45 7.58 82.15 10.28

z 73.81 84.57 14.85 84.50 14.85 78.26 6.12 84.57 14.85

h 74.18 85.53 18.38 85.53 18.38 83.16 12.28 85.53 18.38

psi 92.38 92.84 0.49 92.84 0.49 92.84 0.49 92.84 0.49

Figure 6-2: Hit Rates for the array variables in the Spec95 Swim Benchmark for L1 cache
size 16 KB, associativity 4, and cache line size 8 words. The bold numbers in the KK1,

KK2, and KK3 columns indicate the hit rate of the keep variables for these columns.

Vars #Ref #Kill #Cond Kill

u 28 6 10

v 28 5 12

p 24 2 11

unew 13 6 6

vnew 13 4 8

pnew 13 4 8

uold 13 5 7

vold 13 5 7

pold 13 5 7

cu 15 4 7

cv 15 2 10

z 13 5 5

h 13 4 5

psi 5 0 2

Figure 6-3: Number of Kill Instructions for the array variables in the Spec95 Swim bench-
mark for L1 cache size 16 KB, associativity 4, and cache line size 8 words
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Bench- LRU LRU KK KK % Imprv
mark Hit % Cycles Hit % Cycles Cycles

tomcatv 94.05 1105082720 95.35 1014793630 8.90

applu 97.88 113204089 97.89 113171529 0.03

swim 91.16 12795379 93.52 11188059 14.37

mswim 95.01 10627767 96.30 9715267 9.39

(a)

LRU LRU KK KK % Imprv
Hit % Cycles Hit % Cycles Cycles

93.96 122920088 95.17 113604798 8.20

97.80 635339200 97.80 635200200 0.02

90.82 100394210 93.19 88016560 14.06

94.92 81969394 96.15 75290924 8.87

(b)

Figure 6-4: Overall Hit Rates and Performance for benchmarks: (a) For a given input (b)
Worst case. L1 cache size 16 KB, associativity 4, and cache line size 8 words. We assume
off-chip memory access requires 10 processor clock cycles, as compared to a single cycle to
access the on-chip cache.

6.2.1 Hardware Prefetch Method

We consider a parameterizable variation on a sequential hardware prefetch method. We

integrate this method with Kill + LRU replacement using the strategies of Figure 3-6(c)

and 3-6(d).

Upon a cache miss, a block has to be brought into the cache. This block corresponds

to new, normal data being brought in. Simultaneously, we prefetch i adjacent blocks and

bring them into the cache, if they are not already in the cache. If i is 2, and the block

address of the block being brought in is A, then we will prefetch the A+1 and A+2 blocks.

The ith block will be tagged, if it is not already in the cache. This first group of i+1 blocks

will either replace dead cache blocks or LRU blocks, in that order of preference.

We conditionally prefetch j more blocks corresponding to blocks with addresses A+ i+

1, . . . A + i + j, provided these blocks only replace cache blocks that are dead. This check

is performed before prefetching.

If there is a hit on a tagged block, we remove the tag from the block, and prefetch the

two groups of i and j blocks, as before. The ith and last block in the first group will be
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tagged, if it is not already in the cache. We denote this parameterizable method as ((Kill

+ LRU)−i, (Kill)−j).

We now give some details pertaining to the hardware implementation of the prefetching

method. We have already described how the modified replacement strategy is implemented

in Section 4.1. Generating the new addresses for the blocks is trivial. To control the required

bandwidth for prefetching, we will only prefetch the second1 group of j blocks if these blocks

will only replace dead cache blocks. Before a prefetch request is made for a block, the cache

is interrogated to see if the block is already present in the cache. This involves determining

the set indexed by the address of the block to be prefetched. If this set contains the block

the prefetch request is not made. Further, for the second group of j blocks, if the set does

not contain at least one dead block, the prefetch request is not made. Given the set, it is

easy to perform this last check, by scanning the appropriate kill bits.

The bandwidth from the next level of cache to the cache that is issuing the prefetch

requests is an important consideration. There might not be enough bandwidth to support

a large degree of prefetching (i+ j in our case). Limited bandwidth will result in prefetches

either not being serviced, or the prefetched data will come in too late to be useful. Checking

to see that there is dead space in the second set of j blocks reduces the required bandwidth,

and ensures no cache pollution by the second set of prefetched blocks. Of course, for all

prefetched blocks we check if there is dead data that can be replaced, before replacing

potentially useful data, thereby reducing cache pollution.

6.2.2 Experiments With Ideal Kill

We present results using trace-based ideal kill, where any cache element that will not be

accessed before being replaced is killed immediately after the last access to the element that

precedes replacement. These results give an upper bound on the performance improvement

possible using integrated kill and prefetch methods.

We compare the following replacement and prefetch strategies:

• (LRU, LRU−i): Standard LRU with i-block prefetching. When i = 0 there is no

prefetching done.

• ((Ideal Kill + LRU)−i, (Ideal Kill)−j): The first block and the first i prefetched

1This will be the second group assuming i > 0.
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blocks will replace either a dead block or an LRU block, but the next j prefetched

blocks will only be brought into the cache if they are to replace dead blocks. (cf.

Figure 3-6(c) and (d)).

We cannot prove that ((Ideal Kill + LRU)−i, (Ideal Kill)−j) is better than (LRU,

LRU−i) for arbitrary i and j because Theorem 5 of Chapter 3 does not hold. For i = 0 and

arbitrary j Theorem 6 holds. However, it is very unlikely that the former performs worse

than the latter for any i, j. Kill + LRU can only result in fewer misses than LRU on normal

accesses, and therefore fewer prefetch requests are made in the Kill + LRU scheme, which

in turn might result in a miss for Kill + LRU and a hit for LRU later on. Of course, a future

miss will result in a similar, but not necessarily identical, prefetch request from Kill + LRU.

However, since the prefetch requests in the two strategies have slightly different timing and

block groupings, a convoluted scenario might result in the total number of misses for ((Ideal

Kill + LRU)−i, (Ideal Kill)−j) being more than (LRU, LRU−i). Our experiments indicate

that this does not occur in practice.

We show experimental results for some of the integer and the floating-point benchmarks

from the Spec95 (tomcatv) and Spec2K (art, bzip, gcc, mcf, swim, twolf, vpr) benchmark

suites. In Figures 6-5 through 6-12, we show (on the left) the hit rates achieved by ((Ideal

Kill + LRU)−i, (Ideal Kill)−j) and (LRU, LRU−i) for 0 ≤ i ≤ 3 and 0 ≤ i + j ≤ 7.

These hit rates correspond to a 4-way set-associative cache of size 16KB with a block size

of 32 bytes. We compiled the benchmarks for the Alpha processor instruction set. We

generated traces for the benchmarks using Simplescalar 3.0 [11] and chose a 500 million

total references (instruction + data) sub-trace from the middle of the generated trace. We

used a hierarchical cache simulator, hiercache, to simulate the trace assuming a infinite-sized

L2 cache. We are interested in gauging the performance of the L1 cache prefetch methods.

We also placed a realistic bandwidth constraint on L2 to L1 data transfers.

In each graph, we have five curves. The first curve corresponds to LRU-x, with x varying

from 0 to 7. For most benchmarks LRU-x’s performance peaks at x = 1 or x = 2. The

next four curves correspond to ((Ideal Kill + LRU)−i, (Ideal Kill)−j) for i varying from 0

to 3. The ordinate on the x-axis corresponds to the total number of prefetched blocks, i.e.,

i + j. For example, in the ART benchmark Ideal Kill graph, for i = 3 and j = 4 (i + j = 7)

we get a 78.1% hit rate.

The benchmarks all show that increasing j for a given i does not hurt the hit rate very
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much because we are only prefetching blocks if there is dead space in the cache. Increasing

j beyond a certain point does hurt hit rate a little because of increased bandwidth from L2

to L1 when there is a lot of dead data in the cache, but not because of cache pollution. In

general, for the benchmarks ((Ideal Kill + LRU)−i, (Ideal Kill)−j) performs very well for

i = 1 and j ≥ 0. We conjectured that it is always (though not provably) better than LRU-i,

which is borne out by the results. It is also better in all benchmarks than the no-prefetch

case LRU-0.

The results show that the integration of Kill + LRU and an aggressive prefetching

strategy provides hit rate improvement, significantly so in some cases. Obviously, the

hit rates can be improved further, by using more sophisticated prefetching strategies, at

the potential cost of additional hardware. Many processors already incorporate sequential

hardware prefetch engines, and their performance can be improved using our methods.

6.2.3 Experiments with Compiler-Inserted Kill

We repeat the above experiments except that instead of using trace-based ideal kill we use

compiler-inserted kill as described in Section 4.4.2.

The compiler-inserted kill performs nearly as well as ideal kill. The graphs are nearly

identical in many cases. The main differences between the compiler-inserted kill method

and the ideal kill method is summarized in Figure 6-13. In the table, the number of kill

hints for the trace-based ideal kill is given first. The number of executions of Kill load/store

and Kill range instructions is given. Note that the executed Kill Range instructions are a

very small part of total instructions executed, and their performance impact is negligible.

In fact, for these benchmarks, the Kill Range instructions could have been replaced by Kill

load/store instructions, with no performance impact. The number of kill hints generated

by the compiler is smaller, mainly because the compiler uses a conservative strategy when

inserting kill instructions.

6.2.4 Discussion

In Figure 6-14, we give the hit rates corresponding to four important prefetching strategies,

LRU-1, LRU-2, ((Ideal Kill + LRU)−1, (Ideal Kill)−1) shown as Ideal(1,1) in the table, and

Comp(1,1), the compiler-kill version. Ideal(1,1) is always better than LRU-1, LRU-2 and

the no-prefetch case. The same is true for Comp(1,1), except for ART, where Comp(1,1)
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is fractionally worse than LRU-2. LRU−1 and LRU-2 are not always better than the no-

prefetch LRU-0 case, for example, in SWIM and TOMCATV. The results clearly show the

stability that Kill + LRU replacement gives to a prefetch method.

The memory performance numbers assuming a L2 latency of 18 cycles are given in

Figure 6-15. Note that this is not overall performance improvement since all instructions

do not access memory. The percentage of memory operations is given in the last column of

the table.

Our purpose here was to show that cache pollution can be controlled by modifying cache

replacement, and therefore we are mainly interested in memory performance. The effect

of memory performance on overall performance can vary widely depending on the type

of processor used, the number of functional units, the number of ports to the cache, and

other factors. The empirical evidence supports our claim that modified cache replacement

integrated with prefetching can improve memory performance.

It appears that a scheme where 1 or 2 adjacent blocks are prefetched on a cache miss,

with 2 blocks being prefetched only in the case where the second block replaces a dead block

in the cache improves memory performance over standard LRU-based sequential hardware

prefetching. Further, this method is significantly more stable than standard LRU-based

sequential hardware prefetching, which might actually hurt performance, in some cases.

While we are experimenting with more sophisticated prefetching schemes that may achieve

better hit rates and performance to gauge the effect of modified cache replacement, we

believe that simple schemes with low hardware overheads are more likely to be adopted in

next-generation processors. Our work has attempted to improve both the worst-case and

average performance of prefetching schemes.

It can be observed from the Figures 6-5 through 6-12 that prefetching with Kill+LRU

gives more stable performance even with the aggressive prefetching where relatively large

number of prefetches can be issued on a miss. The stability in presence of prefetching leads

to better worst-case performance thus improving cache predictability.

6.3 Cache Partitioning

We evaluate a disjoint sequences-based cache partitioning strategy on a subset of Spec2000

benchmarks. In our experiments, we use two disjoint sequences for partitioning the cache.
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Figure 6-5: ART L1 Hit Rate
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Figure 6-6: BZIP L1 Hit Rate
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Figure 6-7: GCC L1 Hit Rate
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Figure 6-8: MCF L1 Hit Rate
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Figure 6-9: SWIM L1 Hit Rate
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Figure 6-10: TOMCATV L1 Hit Rate
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Figure 6-11: TWOLF L1 Hit Rate
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Figure 6-12: VPR L1 Hit Rate
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Benchmark Ideal Kill Hints Compiler Kill Hints % of Ideal Kill Hints
Load-Store Range

ART 39943194 20021095 67516 50.29

BZIP 4286636 2562281 195183 64.32

GCC 5385506 1256474 175201 26.58

MCF 49251433 27548733 306489 56.56

SWIM 7657011 5452208 7120 71.30

TOMCATV 9177531 4685160 17544 51.24

TWOLF 15805947 11063292 82631 70.51

VPR 8207570 5208584 37332 63.91

Figure 6-13: Kill Hints for Ideal and Compiler-Kill

Benchmark LRU-0 LRU-1 LRU-2 Ideal (1,1) Comp (1,1)

ART 75.85 80.51 86.97 88.30 86.89

BZIP 96.28 97.02 96.97 97.20 97.14

GCC 96.49 98.82 98.81 99.09 98.91

MCF 67.38 71.25 67.66 71.75 71.59

SWIM 91.88 91.21 91.06 94.44 94.12

TOMCATV 93.62 93.60 93.63 95.04 95.07

TWOLF 88.16 89.23 89.24 90.33 89.99

VPR 93.54 94.14 94.01 94.50 94.40

Figure 6-14: LRU-0, LRU-1, LRU-2, Ideal (1,1), and Comp (1,1) L1 Hit Rates

Benchmark LRU-1 LRU-2 Ideal (1,1) Comp (1,1) %MemoryOp

ART 18.37 58.77 70.83 58.11 33.08

BZIP 8.36 7.81 10.64 9.83 23.02

GCC 33.00 32.88 38.25 34.75 30.66

MCF 11.18 0.74 12.80 12.29 30.19

SWIM -4.55 -5.50 22.42 19.05 18.85

TOMCATV -0.16 0.06 13.13 13.40 28.65

TWOLF 6.40 6.50 13.95 11.52 26.69

VPR 5.09 3.94 8.39 7.49 25.42

Average 9.71 13.15 23.80 20.80 27.07

Figure 6-15: LRU-1, LRU-2, Ideal (1,1), and Comp (1,1) Memory Performance Improvement
with respect to LRU-0 (no prefetching). L2 latency = 18 cycles.
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Address Segment Profile
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Figure 6-16: Memory Access Address Segment Profile of Spec2000 Benchmarks

We divide the accesses into two disjoint sequences based on the address segments cor-

responding to the accesses. The data accesses belong to one of the four address seg-

ments: data, heap, stack, text. These data accesses are categorized into two sequences:

stack seq and non stack seq. The stack seq accesses belong to the stack segment and the

non stack seq accesses belong to the data, heap, text segments. The two sequences have

disjoint sets of addresses.

The address segment distribution of the data accesses in the Spec2000 benchmarks is

shown in Figure 6-16. For example, the benchmark eon has 80% stack seq accesses and

20% non stack seq accesses and the benchmark mesa has 76% stack seq accesses and 24%

non stack seq accesses.

We illustrate the cache partitioning strategy using two disjoint sequences with the two

benchmarks: eon (Spec2000INT) and mesa (Spec2000FP). The cache partitioning for these

two benchmarks is shown in Figure 6-17. These cache partitioning results provide empirical

data for the qualitative cache partitioning example of Figure 5-1. The benchmarks were

simulated using an 8K 4-way set-associative cache with 32 bytes blocks. Figure 6-17 shows

various misses for eon and mesa with respect to associativity. The misses for the disjoint
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sequences stack seq and non stack seq for the associativity 1 to 4 (corresponding cache size

2K to 8K) show the individual disjoint sequence misses when these sequences are applied

individually to the cache. The number of misses for the stack seq are lower than the misses

for the non stack seq for each associativity point. The number of misses for the 4-way

LRU 8K cache is shown as a horizontal line and it represents the misses for the combined

sequence. The lower bound for the number of misses for the combined sequence is the sum

of the misses of stack seq and non stack seq at associativity 4.

Any cache partitioning solution should have the total number of misses of the partitioned

cache between the two horizontal lines. Figure 6-17 shows three partitioning data points for

eon and mesa. The cache partitioning is implemented using the modified LRU replacement

policy as described in 5.5.2. The three cache partitioning points are: (stack seq maximum 1

way, non stack seq maximum 3 ways), (stack seq maximum 2 ways, non stack seq maximum

2 ways), and (stack seq maximum 3 ways, non stack seq maximum 1 way). There are two

partitioning points for eon and one partitioning point for mesa because the number of misses

for the partitioned cache is lower than the misses for the combined sequence applied to the

cache.

The cache partitioning miss rates for a set of Spec2000 benchmarks based on stack seq

and non stack seq for a 4-way 8K set-associative cache are shown in Table 6.3. The column

LRU indicates the miss rate for cache without any partitioning. The column S1 NS3 shows

the overall miss rate for the partitioned cache where stack seq has maximum 1 way and

non stack seq has maximum 3 ways. Similarly, the other two partitioning point miss rates

are shown in the columns S2 NS2 and S3 NS1. The miss rates for the partitioning points

with lower miss rate than LRU are shown in bold case letters. Some benchmarks don’t

show any improvement with any partitioning point because the granularity of partitioning

does not allow the partitioning point miss rate to be lower than the LRU miss rate. Some

benchmarks show only marginal improvement with partitioning because the number of

stack seq misses are very few compared to non stack seq misses even though the number of

stack seq accesses are not small. Figure 6-18 shows the address segment misses distribution

of the Spec2000 benchmarks for 4-way and 8-way 8K caches. For the 4-way 8K cache, the

stack seq misses are very small to negligible for all the benchmarks except eon, gcc, and

mesa. This significant difference in misses between the two sequences limits the overall miss

rate improvement from cache partitioning using the stack seq and non stack seq sequences.
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Benchmark LRU S1 NS3 S2 NS2 S3 NS1

ammp 7.97 7.93 7.93 7.93
applu 15.74 15.90 15.90 15.90
apsi 2.72 2.78 2.88 2.88
art 39.80 39.81 39.81 39.81
bzip2 5.12 5.34 5.43 5.43
crafty 7.73 9.73 9.73 9.73
eon 2.36 2.87 2.23 2.15

equake 17.81 17.86 17.91 17.91
facerec 2.77 2.76 2.76 2.76
gap 1.46 1.60 1.60 1.60
gcc 3.61 4.23 4.49 7.30
gzip 3.89 3.90 3.90 3.90
mcf 34.95 34.96 34.96 34.96
mesa 1.42 4.66 1.54 1.31

mgrid 16.30 16.34 16.37 16.38
parser 5.65 6.01 6.01 6.01
perlbmk 0.27 0.29 0.31 0.31
sixtrack 0.92 0.97 0.97 0.97
swim 20.05 20.04 20.04 20.04
twolf 10.58 10.56 10.56 10.56
vortex 2.00 2.18 2.58 2.59
vpr 6.83 6.83 6.83 6.83
wupwise 2.10 2.10 2.10 2.10

Table 6.1: Two Sequence-based Partitioning Results for 4-way 8K Cache

The cache partitioning results for an 8-way 8K set-associative cache are shown in Table 6.3.

The LRU column shows the miss rates without partitioning and the columns S1 NS7 through

S7 NS1 show the miss rates of the partitioned cache with stack seq maximum ways 1 − 7

(non stack seq maximum ways 7− 1). For the mesa benchmark, the misses of the stack seq

are negligible with respect to the non stack seq sequence in the 8-way 8K cache, resulting in

marginal improvement with partitioning for the 8-way 8K cache as compared to the 4-way

8K cache.

Considering the address segment profile of accesses in Figure 6-16, the two sequence-

based cache partitioning can also be applied using the heap and data segment accesses as

sequences. When the two-sequence partitioning does not lead to miss rate improvement

due to granularity of partitioning or variations within the sequence, then a multi-sequence

partitioning algorithm that uses two-sequence partitioning recursively can lead to better

partitioning in a hierarchical manner.
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Benchmark LRU S1 NS7 S2 NS6 S3 NS5 S4 NS4 S5 NS3 S6 NS2 S7 NS1

ammp 7.94 7.90 7.90 7.90 7.90 7.90 7.90 7.90
applu 16.16 16.29 16.29 16.29 16.29 16.29 16.29 16.29
apsi 2.55 2.53 2.61 2.61 2.61 2.61 2.61 2.61
art 39.80 39.80 39.80 39.80 39.80 39.80 39.80 39.80
bzip2 5.00 5.10 5.16 5.19 5.19 5.19 5.19 5.19
crafty 6.97 7.31 8.64 8.64 8.64 8.64 8.64 8.64
eon 1.69 7.02 2.66 1.73 1.65 1.65 1.65 1.65
equake 15.47 15.57 15.58 15.59 15.59 15.59 15.59 15.59
facerec 2.78 4.42 2.76 2.76 2.76 2.76 2.76 2.76
gap 1.45 1.44 1.45 1.45 1.45 1.45 1.45 1.45
gcc 3.37 4.66 3.60 3.60 3.95 4.64 5.99 9.50
gzip 3.86 3.88 3.88 3.88 3.88 3.88 3.88 3.88
mcf 34.90 34.90 34.90 34.90 34.90 34.90 34.90 34.90
mesa 0.63 7.26 2.64 1.33 0.74 0.62 0.62 0.62
mgrid 14.77 14.71 14.74 14.75 14.75 14.75 14.75 14.75
parser 5.49 5.55 5.73 5.73 5.73 5.73 5.73 5.73
perlbmk 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.27
sixtrack 0.68 0.80 0.80 0.80 0.80 0.80 0.80 0.80
swim 20.05 20.04 20.04 20.04 20.04 20.04 20.04 20.04
twolf 10.01 9.99 9.99 9.99 9.99 9.99 9.99 9.99
vortex 1.91 2.77 1.96 2.08 2.15 2.16 2.16 2.16
vpr 6.48 6.47 6.47 6.47 6.47 6.47 6.47 6.47
wupwise 1.99 1.97 1.97 1.97 1.97 1.97 1.97 1.97

Table 6.2: Two Sequence-based Partitioning Results for 8-way 8K Cache

For the two sequence based cache partitioning, a cache partitioning solution has two

cache-ways assignments − one for each sequence. The cache partitioning solution leads to

lower miss rates than the unpartitioned LRU. In order to find a cache partitioning solution,

we use the reuse distance information of each sequence in combination with other parameters

to determine the number of cache-ways to assign to each of the two sequences. We obtained

the reuse distance profile of stack seq and non stack seq accesses for the 4-way and 8-way

8K caches with a maximum reuse distance of 256 and computed the weighted average of

reuse distance profile for these two sequences. The weighted average of the reuse distance

is inversely proportional to the cache partition size assignment. For the mesa and eon

benchmarks, the partition size assignment is S3 NS1 for the 4-way 8K cache and S6 NS2 for

the 8-way 8K cache. The cache partitioning points determined by the reuse distance-based

algorithm show the miss rates in italics in Table 6.3 and Table 6.3. The partitioning points

determined by the algorithm that coincide with the simulated bold face partitioning points
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Benchmark In-order Out-of-order
LRU S3 NS1 Speedup LRU S3 NS1 Speedup

eon 0.4913 0.4896 0.9965 0.7933 0.7940 1.0008

mesa 0.6825 0.6942 1.0171 1.2147 1.2591 1.0365

Table 6.3: IPC results for two sequence-based partitioning for 4-way 8K Cache

are shown in bold face italics.

In order to get the Instructions Per Cycle (IPC) information, we ran the benchmarks

eon and mesa on the Simplescalar out-of-order simulator. We considered two processor

configurations for the instruction issue and execution: in-order without speculation and

out-of-order with speculation. The IPC results for the two benchmarks are shown in Ta-

ble 6.3. These results are for the 4-way 8K cache without partitioning using LRU and with

partitioning solution S3 NS1. The LRU columns show the IPC for the unpartitioned cache

and the S3 NS1 columns show the IPC for the partition solution S3 NS1. The speedup of

the partitioning solution over the LRU is shown the speedup columns. The IPC for eon

under in-order decreases slightly for S3 NS1 compared to LRU even though the L1 cache

miss rates improves for S3 NS1. This decrease in IPC happens because the increase in the

misses for the non stack seq under S3 NS1 is more critical for the IPC. The benchmark mesa

has 1.71% and 3.65% improvement in IPC for the in-order and out-of-order configurations

respectively.
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4-way 8K Address Segment Misses
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8-way 8K Address Segment Misses
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Figure 6-18: Address Segment Misses Profile of Spec2000 Benchmarks
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Chapter 7

Related Work

On-chip memory plays an important role in the overall performance of a general-purpose

or embedded system. As a result, a major portion of the chip area of modern processors

is occupied by on-chip memory (caches, SRAM, ROM). One important component of on-

chip memory is a cache. Caches are an integral part of modern processors (e.g., Pentium

4 [37], Alpha 21264 [54], MIPS R10000 [135], and IA-64 [29]) and embedded processors (e.g.,

ARM9TDMI [1]). Many processors use out-of-order execution to hide cache miss latencies

and use miss information/status handling registers (MSHRs) to allow multiple outstanding

misses to the cache. Even with these latency hiding techniques, the cache misses can reduce

performance. There has been lot of research effort focussed on improving on-chip memory

performance using a variety of architectural techniques. Previous work to improve cache

performance and predictability that is related to the mechanisms presented in this thesis is

described in the following sections.

7.1 Cache Architectures

There are several cache parameters that can be optimized to improve cache performance

as well [34]. The effectiveness of direct-mapped caches is studied in [35] and the effect

of associativity in caches is described in [36]. In the context of direct-mapped caches,

pseudo-associativity was achieved using column-associative caches [2]. The issue bandwidth

limitation in caches and proposed solutions are discussed in [9, 10].

Different cache architectures have been proposed either to improve cache performance

or to reduce power consumed by the cache. An adaptive non-uniform cache structure is
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presented in [55] for wire-delay dominated caches. A modular reconfigurable architecture

called smart memories is presented in [71]. The architecture consists of processing tiles

where each tile contains local memory, local interconnect, and a processor core. A cool-

cache architecture is presented in [118, 119] and a direct-addressed cache architecture is

proposed in [129] to reduce cache power.

A comparison of resizable caches that use selective-ways and selective-sets from the

energy-delay perspective is presented in [134]. A hybrid selective-sets-and-ways resizable

cache is proposed that offers better resizing granularity than both the previous organi-

zations. A cache management framework to handle the heterogeneity in memory access

patterns in a CMP platform is described in [40]. It provides for priority classification, as-

signment, and enforcement of memory access streams. The priority is determined by the

degree of locality, latency sensitivity, and application performance needs. The priority en-

forcement is done through cache allocation, set partitioning, and cache regions. A detailed

study of the fairness issue for a shared cache in the CMP architecture is presented in [57]. It

proposes fairness metrics that measure the degree of fairness in cache sharing and proposes

static and dynamic L2 cache partitioning algorithms that optimize fairness. A reconfig-

urable cache design that allows the cache SRAM arrays to be dynamically divided into

multiple partitions that can be used for different processor activities is presented in [95].

This design was evaluated for instruction reuse in media processing benchmarks.

As described in Chapter 3, my approach is to augment the replacement policy of a

set-associative cache to improve cache performance and predictability.

7.2 Locality Optimization

The spatial and temporal locality of memory accesses is used to improve cache performance

either in software or in hardware. The software approaches use static locality optimization

techniques for loop transformations in the compiler [51]. Some approaches use cache miss

analysis to guide the compiler optimizations [16, 31]. An approach that makes use of spatial

footprints is presented in [62].

Some approaches use hardware structures to detect and exploit specific data access

patterns (e.g., streams) to improve cache performance. In order to improve direct-mapped

cache performance, a fully-associative cache with prefetch buffers was proposed in [49]. The
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use of stream buffers to improve cache performance was described in [83]. Dynamic access

reordering was proposed in [75] and improving bandwidth for streamed references was

presented in [76]. A hardware-based approach that uses hardware miss classification was

proposed in [24] and a spatial pattern prediction approach was presented in [17]. A locality

sensitive multi-module cache design is presented in [101]. The run-time detection of spatial

locality for optimization is described in [48].

In [99] the cache miss patterns are classified into four categories corresponding to the

type of access pattern – next-line, stride, same-object, or pointer-based transitions. They

present a hardware profiling architecture to identify the access pattern which can help in

prefetching and other optimizations. In [30] it is shown that locality and miss rates can be

associated with and predicted for static memory instructions rather than memory addresses

alone based on reuse distance analysis. In [78] spatial regularity is defined for streams and a

method to detect streams in an on-line algorithm is described that can be applied in profile-

driven optimizations. In [14] a method to compute stack histograms to estimate the number

of cache misses in a compiler is illustrated with the locality enhancing transformations(e.g.,

tiling). The stack histogram is computed with the data dependence distance vectors. A

parameterized model of program cache behavior is presented in [139]. The model predicts

the cache misses for arbitrary data set sizes given the cache size and associativity. This

model uses the reuse distance analysis presented in [28].

In my work, I have focussed on a general method to detect dead data and have not

specifically targeted detection of streams. However, the techniques presented to determine

dead data, in many cases, will detect short-lived streaming data and mark the data as dead.

7.3 Cache Management

Some current microprocessors have cache management instructions that can flush or clean

a given cache line, prefetch a line or zero out a given line [73, 77]. Other processors permit

cache line locking within the cache, essentially removing those cache lines as candidates to

be replaced [26, 27]. Explicit cache management mechanisms have been introduced into

certain processor instruction sets, giving those processors the ability to limit pollution.

One such example is the Compaq Alpha 21264 [53] where the new load/store instructions

minimize pollution by invalidating the cache-line after it is used.
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An approach for data cache locking to improve cache predictability is presented in [125].

In [72] the use of cache line locking and release instructions is suggested based on the

frequency of usage of the elements in the cache lines. In [112], active management of data

caches by exploiting the reuse information is discussed along with the active block allocation

schemes. An approach using dynamic reference analysis and adaptive cache topology is

presented in [86]. The approach using dynamic analysis of program access behavior to pro-

actively guide the placement of data in the cache hierarchy in a location-sensitive manner

is proposed in [47]. In [33] a fully associative software managed cache is described. An

integrated hardware/software scheme is described in [32]. The adaptive approaches use

different control mechanisms to improve cache performance. A method based on adaptive

cache line size is described in [124]. A method for adaptive data cache management is

described in [116]. Cache management based on reuse information is addressed in [97].

A run-time approach that bypasses cache for some accesses is described in [46]. The

hardware determines data placement within the cache hierarchy based on dynamic refer-

encing behavior. The theoretical upper bounds of cache hit ratios using cache bypassing

are compared with experimental results for integer applications. A mechanism to identify

misses as conflict or capacity misses at run-time and using this information in an adaptive

miss buffer is presented in [25].

The keep instructions in Chapter 3 bear some similarity to the work on cache line locking

[72, 125]. The methods to determine what data to keep used are different. I provide hit

rate guarantees when my algorithm is used to insert cache control instructions.

7.4 Replacement Policies

Several replacement policies were proposed for page-based memory systems, though the

tradeoffs are different for cache replacement policies. An early-eviction LRU page replace-

ment (EELRU) is described in [107]. Belady’s optimal replacement algorithm was presented

in [5] and its extension using temporal and spatial locality was presented in [113]. The ef-

ficient simulation of the optimal replacement algorithm was described in [110].

Compiler analysis based methods to improve replacement decisions in caches and main

memory are presented in [7, 128]. In [132] some modified LRU replacement policies have

been proposed to improve the second-level cache behavior that look at the temporal locality
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of the cache lines either in an off-line analysis or with the help of some hardware. In [65],

policies in the range of Least Recently Used and Least Frequently Used are discussed.

The replacement policies which take into account non-uniform miss costs are considered

in [44, 45]. An approach that corrects the mistakes of the LRU policy using some hardware

support is discussed in [50]. A hardware-based approach to detect dead blocks and correlate

them with blocks to prefetch is presented in [64]. An approach that uses time-keeping in

clock cycles for cache access interval or cache dead time is presented in [38].

In [103] Keep-me and Evict-me compiler annotations are introduced with memory oper-

ations. The annotations are maintained with a cache line and are used on a cache miss. The

replacement policy prefers to evict cache lines marked evict-me and retain the cache lines

with keep-me annotation if possible. In [127] an aggressive hardware/software prefetch-

ing scheme is combined with evict-me based replacement scheme to handle cache pollution

caused by data being pushed into L1 by useless prefetches. To handle the non-uniform

distribution of memory accesses across different cache sets, a variable-way cache combined

with reuse replacement is presented for L2 caches in [93]. The number of tag entries relative

to the number of data lines is increased to vary the associativity in response to the program

demands. Some adaptive insertion policies are presented in [92] where incoming data block

is kept at the LRU position instead of making it an MRU data depending on the working

sets of the program. This reduces miss rates for the L2 caches and avoids thrashing data.

7.5 Prefetching

In [121, 123] a summary of some prefetching methods is presented with the design trade-

offs in implementing those prefetching strategies. Some of the prefetching approaches are

described below.

Hardware Prefetching

In hardware sequential prefetching, multiple adjacent blocks are prefetched on a block access

or a miss. A common approach is one block lookahead (OBL) where a prefetch is initiated

for the next block when a block is accessed [108]. A variation of the OBL approach uses

prefetch-on-miss and tagged prefetch. Cache pollution is a problem if more than one block

is prefetched for a block access [91]. Another hardware approach for prefetching uses stride
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detection and prediction to prefetch data [18, 19].

Software Prefetching

There have been many proposals for software prefetching in the literature. Many tech-

niques are customized toward loops or other iterative constructs (e.g., [61]). These software

prefetchers rely on accurate analysis of memory access patterns to detect which mem-

ory addresses are going to be subsequently referenced [68, 69, 79, 82]. The software data

prefetching for the HP PA-8000 compiler is presented in [102].

Software has to time the prefetch correctly – too early a prefetch may result in loss of

performance due to the replacement of useful data, and too late a prefetch may result in

a miss for the prefetched data. I do not actually perform software prefetching in my work

– instead software control is used to mark cache blocks as dead as early as possible. This

significantly reduces the burden on the compiler, since cycle-accurate timing is not easy to

predict in a compiler.

Prefetching with Other Mechanisms

Some approaches combine prefetching with other mechanisms. For example, the dead-

block prediction and correlated prefetching is described for direct-mapped caches in [64]

and prefetching and replacement decisions have been made in tandem in the context for

I/O prefetching for file systems [13, 85]. The work of [63, 64] was one of the first to

combine dead block predictors and prefetching. The prefetching method is intimately tied

to the determination of dead blocks. Here, I have decoupled the determination of dead

blocks from prefetching – any prefetch method can be controlled using the notion of dead

blocks. I have used a simple hardware scheme or profile-based analysis to determine dead

variables/blocks, and a simple hardware prefetch technique that requires minimal hardware

support. The predictor-correlator methods in [64] achieve significant speedups, but at

the cost of large hardware tables that require up-to 2MB of storage. A tag-correlating

prefetcher (TCP) which uses tag sequence history can be placed at the L2 cache level is

presented in [39]. It uses smaller hardware and provides better performance compared to

address-based correlating prefetchers. A fixed prefetch block based approach to reduce

cache pollution in small caches is presented in [96].
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Other Prefetching Approaches

There are many prefetching approaches that target different type of access patterns and

use different type of information for prefetching. A prefetching approach based on depen-

dence graph computation is proposed in [3] and an irregular data structure prefetching is

considered in [52]. A data prefetch controller which executes a separate instruction stream

and cooperates with the processor is presented in [122]. A cooperative hardware-software

prefetching scheme called guided region prefetching (GRP) is presented in [126]. This ap-

proach uses compiler introduced hints encoded in load instructions to regulate a hardware

prefetching engine. An approach to detect strided accesses using profiling and introducing

the prefetch instructions in the compiled program is presented in [70].

Finally, my work has not resulted in new prefetch methods, but rather I have focussed

on mitigating cache pollution effects caused by aggressive prefetch methods [43].

7.6 Cache Partitioning

Cache partitioning has been proposed to improve performance and predictability by di-

viding the cache into partitions based on the needs of different data regions accessed in a

program. A technique to dynamically partition a cache using column caching was presented

in [23]. While column caching can improve predictability for multitasking, it is less effective

for single processes. A split spatial/non-spatial cache partitioning approach based on the

locality of accesses is proposed and evaluated in [90, 100]. The data is classified into either

a spatial or temporal and stored in the corresponding partition. A filter cache is proposed

in [98]. It uses two independent L1 caches with different organizations placed in parallel

with each cache block containing some reuse information. Another approach that uses a

sidebuffer with dynamic allocation is presented in [80].

Another benefit of cache partitioning is that it avoids conflicts between different data

regions by mapping them to different regions. An approach to avoid conflict misses dy-

namically is presented in [6]. There are also approaches for page placement [12, 105], page

coloring [8], and data layout [20, 21, 22] to avoid conflict misses. A model for partitioning

an instruction cache among multiple processes has been presented [67]. McFarling presents

techniques of code placement in main memory to maximize instruction cache hit ratio

[74, 115].
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An approach to partition the load/store instructions into different cache partitions is

presented in [87, 88]. It is evaluated with a direct-mapped cache. In [94] the first level data

cache is split into several independent partitions can be distributed across the processor

die. The memory instructions are sent to the functional units close to the partition where

the data is likely to reside. The goal of this approach is to reduce the latency of large cache

arrays. In [117, 120] the memory size requirements of scalars in multimedia systems is ex-

plored with the use of this information in cache partitioning. A cache Minimax architecture

uses this static predictability of memory accesses to keep the scalars in a small minicache.

In [111] analytical cache models are developed for a multiple process environment and

these models are applied to cache partitioning among multiple processes. The optimal

cache allocation among two or more processes is studied in [109]. It is shown that the

LRU replacement policy is very close to optimal even though in the transient state LRU

converges slowly as the allocation approaches the steady-state allocation. It also presents a

policy that uses the remaining time quantum for the process and the marginal benefit from

allocating more cache space to the running process. In [114] this work is extended with an

on-line algorithm for cache partitioning applied to disk caches.

Low Power Caches

There are several cache partitioning approaches that focus on reducing cache power con-

sumption (e.g., [4, 56, 58, 66, 81, 89, 133, 136, 138]). A compiler-directed approach to

turn-off parts of the cache containing data not currently in use can lead to some cache en-

ergy savings is presented in [137]. A direct addressed cache where tag-unchecked loads and

stores are used with the compiler support is presented in [131]. The energy saved in avoiding

the tag checks leads to overall energy savings. A combination of the direct addressed cache

and software controlled cache line size called Span Cache is presented in [130].

Cache Predictability

In the context of multiprogrammed applications, a cache partitioning strategy is proposed

in [104] to improve task scheduling and minimize overall cache size. A process dependent

static cache partitioning approach for an instruction cache is presented in [59]. The in-

struction cache is divided into two partitions where one partition’s size depends on the task

scheduled to run and the other partition uses LRU.
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I have developed a theory for cache partitioning based on disjoint access sequences that

can provide guarantees of improved behavior and evaluated it on Spec2000 benchmarks.

7.7 Memory Exploration in Embedded Systems

Memory exploration approaches use different on-chip memory parameters and find appro-

priate combinations for the desired application domain. Panda, Dutt and Nicolau present

techniques for partitioning on-chip memory into scratch-pad memory and cache [84]. The

presented algorithm assumes a fixed amount of scratch-pad memory and a fixed-size cache,

identifies critical variables and assigns them to scratch-pad memory. The algorithm can be

run repeatedly to find the optimum performance point. A system-level memory exploration

technique targeting ATM applications is presented in [106]. A simulation-based technique

for selecting a processor and required instruction and data caches is presented in [60]. I

have focussed on improving cache performance in this thesis.
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Chapter 8

Conclusion

8.1 Summary

The on-chip memory in embedded systems may comprise of a cache, an on-chip SRAM,

or a combination of a cache and an on-chip SRAM. In this thesis, the problems associated

with on-chip cache in embedded systems were addressed to improve cache performance and

cache predictability, and to reduce cache pollution due to prefetching.

The problems associated with the cache performance and predictability in embedded sys-

tems were addressed using a intelligent replacement mechanism. The theoretical foundation

for the cache mechanism was developed along with the hardware and software aspects of

the mechanism. Intelligent replacement was evaluated on a set of benchmarks to measure

its effectiveness. It improved the performance of the studied benchmarks and improved

cache predictability by improving its worst-case application performance over a range of

input data. This increased predictability makes caches more amenable for use in real-time

embedded systems.

The problem of cache pollution due to prefetching was addressed by integrating the

intelligent cache replacement mechanism with hardware prefetching in a variety of ways.

I have shown using analysis and experiments with a parameterizable hardware prefetch

method that cache pollution, a significant problem in aggressive hardware prefetch methods,

can be controlled by using the intelligent cache replacement mechanism. The resultant

prefetch strategies improve performance in many cases. Further, I have shown that a new

prefetch scheme where 1 or 2 adjacent blocks are prefetched depending on whether there is

dead data in the cache or not works very well, and is significantly more stable than standard
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sequential hardware prefetching.

The problem of cache performance, cache predictability and cache pollution due to

prefetching was also addressed using a cache partitioning approach. A concept of disjoint

sequences is used as a basis for cache partitioning. I derived conditions that guaranteed

that partitioning leads to the same or less number of misses than the unpartitioned cache

of the same size. Several partitioning mechanisms were designed which use the concept

of disjoint sequences. In particular, the partitioning mechanisms are based on a modified

LRU replacement, cache tiles, and multi-tag sharing approach. In addition to the hard-

ware mechanisms, a static partitioning algorithm was developed that used the hardware

mechanisms for cache partitioning.

8.2 Extensions

There are several extensions possible for the cache mechanisms described in this thesis.

Some of the extensions are described here.

8.2.1 Kill+LRU Replacement for Multiple Processes

The Kill+LRU replacement can be extended to a multi-process environment where the

information about process scheduling and process footprints can be used to derive the reuse

distance and is subsequently used in determining the dead blocks for a process and marked

as killed blocks for Kill+LRU replacement. The operating system may use different types of

scheduling methods for processes, e.g., round-robin scheduling, priority-based scheduling.

The time slot for which a process runs before the operating system switches to another

process may be a parameter to the operating system. For a process, if two accesses to a

cache block happen in the same time slot, then the reuse distance would be the same as

within the process. But, if the two accesses happen in different time slots of the process,

the reuse distance between these two accesses is increased due to the data accessed by

the intervening process(es). So, after a time during a time slot, some of the accesses of

the current process effectively become the last accesses, and thus the corresponding cache

blocks can be marked as killed blocks. This takes into account the information about the

next process to execute and its impact on the reuse distance of the current process’ accesses.

Since different processes may use the same virtual address space, a process number would
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need to be kept with the cache blocks in order to identify the cache blocks belonging to

other processes. Assuming the cache is not flushed on a context switch, some of the data

of the process, if recently run, may still be in the cache and the Kill+LRU replacement can

improve on some of these cold misses as well.

8.2.2 Kill+Prefetch at L2 level

The Kill+LRU replacement and its combination with prefetching has been evaluated at the

Level 1 (L1) cache level. The Kill+LRU replacement policy can be used in the Level 2

(L2) cache and the prefetching of data from main memory to L2 can be combined with this

replacement policy at the L2 level. The L2 cache is accessed when a data access misses in

the L1 cache. A block from the L1 cache is evicted and a data block from the L2 cache

replaces the evicted block. The L2 cache line size and associativity are bigger than the

L1 cache because the effect of L2 cache misses can be significant considering the relatively

high memory access latency. Also, the L2 cache may be shared by multiple processors in a

shared-memory multiprocessor or by multiple processes in a single processor environment.

The L2 cache may have the inclusion property which requires that all the data in L1 cache

is also in the L2 cache at all times.

The Kill+LRU replacement at the L2 level works similar to the L1 cache except that

(1) the decision to mark an L2 cache block as a killed block is based on the reuse distance

condition at the L2 level and (2) an L2 block may be marked as a killed block even if L2

is not accessed on an access, i.e., there is no L1 cache miss. A prefetching approach can be

combined with Kill+LRU at the L2 cache level similar to the one for the L1 cache.

8.2.3 Disjoint Sequences for Program Transformations

The concept of disjoint sequences was applied to cache partitioning as discussed in Chap-

ter 5. This concept of disjoint sequences can also be applied to improve performance using

program code transformations. The transformations are based on disjoint sequence theo-

rems which show that if we can reorder a program’s memory reference stream such that the

reordered memory reference stream satisfies a disjointness property, then the transformed

program corresponding to the reordered stream is guaranteed to have fewer misses for any

cache with arbitrary size or organization so long as the cache uses the LRU replacement

policy. We can apply these theoretical results to reorder instructions within a basic block,
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to transform loops, to reorder blocks within a procedure, or to reorder procedures within a

program so as to improve hit rate for any cache that uses LRU replacement. Based on these

theorems, we develop algorithmic methods for program transformation to improve cache

performance. The algorithm for transformation uses a disjointness metric to recursively

perform the reordering transformation in presence of the dependency constraints. I did

some preliminary work on loop transformations using the concept of disjoint sequences [41].

In this work, disjoint sequences were applied for loop distribution transformation. It could

be extended to loop fusion, loop interchange, loop tiling, and other loop transformations.

Also, the reordering transformation approach can be incorporated into a compiler that

targets improved performance.

8.2.4 Profile-based Cache Exploration System

The profile-based evaluation framework can be extended to build a cache exploration system.

This system would evaluate a set of cache mechanisms and compare the software/hardware

cost and performance trade-off information. Also, the system can evaluate the collective

interaction of different mechanisms together and suggest the combination of mechanisms

appropriate for the application. We consider the following categories of cache mechanisms

for cache memory system exploration: Replacement Policies (LRU and Kill+LRU), Cache

Partitioning (way-based, set-based), and Prefetching (combined with Kill+LRU). The mem-

ory architecture exploration system would consist of the following components: Configu-

ration/Constraints Language, Assembly/Binary Code Transformation, Software/Hardware

Cost Estimator, Simulator, and Optimizer.

Configuration/Constraints Language: The exploration system requires a language to

specify the configuration that can be used by the different components. The configuration

language should be able to specify the aspects of the cache mechanisms that would be

considered by the optimizer. The constraints language specifies the goal constraints for the

optimizer.

Assembly Code Transformation: This module is used to transform the assembly/binary

code to introduce hints or cache control instructions into the assembly/binary code to evalu-
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ate a given configuration. This module is used by the simulator to quantify the performance.

Hardware Cost Estimator: This module takes as input a configuration and estimates

the hardware cost of the given configuration. It uses different formulas for logic and memory

size estimation. This module uses the transformed assembly/binary code to measure the

static software cost, and is also used by the optimizer to obtain the software/hardware cost

during the exploration process.

Simulator: This module simulates a given configuration and generates the performance

numbers that are used by the optimizer to guide the exploration process. The simulator

uses the statically transformed assembly/binary code for simulation.

Optimizer: The optimizer takes the goal constraints and uses an exploration algorithm to

explore different cache mechanisms and select the mechanism or a combination of mecha-

nisms that meets the goal constraints.
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Appendix A

Additional Information and Data

In this appendix, we give variant algorithms and additional empirical evaluation on selected

algorithms.

A.1 Kill+LRU Replacement and Other Approaches

Kill with LRU and Making Dead Block LRU

In the Kill+LRU replacement, a dead block is marked by setting its kill bit upon the last

access to that block. The kill bits are used along with the LRU ordering information to

make replacement decisions. In a different approach, dead blocks are handled without the

use of kill bits and only with the help of the LRU ordering information. In this approach,

a block is killed by making it the LRU block. This approach performs is equivalent to

the MRK LRU variation of the Kill+LRU replacement. Since there is no additional kill

bit used with each block, there is no way to distinguish between a dead block at the LRU

position and a live block at the LRU position. Moreover, it does not provide any information

about the number of dead blocks in the LRU ordering of the blocks which is useful in the

Kill+Keep+LRU replacement and Kill+Prefetch+LRU as described later.

Kill with LRU and Split Spatial/Temporal Cache

In the split spatial/temporal cache, the data is sent either to spatial cache or temporal

cache. The data is classified either as spatial data or as temporal data. The classification of

the data may be done at compile time or done dynamically at run-time. Since the spatial
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and temporal caches are separate structures, the combined cache space in these structures

may not be used effectively if one type of data causes thrashes its cache structure while

the other cache structure is underutilized. Moreover, if the access pattern for one type

of data changes to the other type then the data needs to be moved to the other cache

structure. The Kill+LRU replacement provides a general mechanism to handle both classes

of data. The spatial type of data results in dead blocks and the dead blocks are marked by

setting their kill bits. The temporal data is not specifically marked but the temporal type

of data benefits by the Kill+LRU replacement because the dead blocks are chosen first for

replacement. An additional Keep state is added in the Kill+Keep+LRU replacement which

can be used to indicate the temporal type of data. This allows the temporal type of data

to be potentially kept longer in the cache.

A.2 OPT Improvement and MRK-based Estimation

One way of estimating the MRK-based miss rate improvement over LRU was described in

Section 3.3.1. Another way of estimating the miss rate improvement uses the information

from the reuse distance profile and augments the estimation formula in the following way.

For each reuse distance d = a to d = dmax, the contribution is computed the same way

as before, but with each step i (i = a to i = dmax), the weight Wj of the reuse distances

j = dmax down to j = a are reduced based on weight Wi. This reduction in weights of

the higher reuse distances accounts for the replacement of a block by another block with a

different reuse distance. The comparison of the MRK-based estimated improvement using

the above formula with the OPT improvement over LRU is shown in Figure A-1. The

comparison of OPT improvement, the formula in Section 3.3.1, and the formula in this

section is shown in Figure A-2. The OPT miss rate improvement over LRU for 2-way and

4-way caches for 100 Million and 1 Billion instructions are shown in Table A.1 and Table A.2

respectively. The tables show the results for three different cache sizes: 8K, 16K, and 32K.

The cumulative set reuse distance profiles for the Spec2000 benchmarks for 100 Million and

1 Billion instructions using a 4-way 16K cache are shown in Figure A-3 through Figure A-6.
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Figure A-1: OPT Improvement and Estimated Improvement Formula 1 Based on Profile
data and Uniform Distance Model
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Benchmark 8K 100M 8K 1B 16K 100M 16K 1B 32K 100M 32K 1B

ammp 12.29 12.38 13.90 13.61 14.48 13.69
applu 23.50 100.00 11.47 100.00 2.76 100.00
apsi 27.97 20.94 34.19 20.90 22.47 9.63
art 0.60 0.59 1.07 1.07 2.30 2.30
bzip2 13.89 12.75 13.70 12.75 14.30 13.41
crafty 39.02 38.72 42.10 41.90 41.26 41.42
eon 35.83 36.12 32.58 33.18 34.52 34.93
equake 12.53 12.84 11.22 11.57 9.57 9.95
facerec 4.43 4.67 1.94 2.14 2.03 2.20
gap 14.03 7.36 18.34 6.51 12.44 2.69
gcc 21.09 23.14 20.61 22.47 20.38 22.41
gzip 12.72 14.07 16.40 17.44 21.39 22.00
mcf 2.86 2.62 3.50 3.28 4.05 3.83
mesa 33.42 29.75 20.05 15.52 22.28 15.65
mgrid 17.40 15.83 13.92 9.81 0.56 2.00
parser 14.05 15.04 10.92 11.91 10.92 12.20
perlbmk 17.90 17.73 12.72 13.48 14.44 15.17
sixtrack 36.52 36.56 14.53 14.52 2.51 2.57
swim 0.20 100.00 5.06 100.00 9.83 100.00
twolf 13.10 13.08 11.47 11.44 11.61 11.57
vortex 14.51 14.36 11.96 11.59 16.93 16.49
vpr 16.33 16.64 11.91 12.98 11.26 12.99
wupwise 10.17 13.00 6.39 9.47 3.26 4.36

Table A.1: OPT Miss Rate Improvement Percentage over LRU for 2-way Associative 8K,
16K, 32K Caches
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Benchmark 8K 100M 8K 1B 16K 100M 16K 1B 32K 100M 32K 1B

ammp 15.70 15.67 17.45 17.17 18.21 17.31
applu 33.33 100.00 10.03 100.00 0.32 100.00
apsi 27.02 23.54 36.97 22.70 28.82 12.28
art 0.76 0.76 1.56 1.56 3.27 3.27
bzip2 15.39 15.03 15.57 15.16 16.86 16.19
crafty 45.32 44.73 46.29 46.27 42.97 42.58
eon 49.82 48.55 39.49 39.93 38.50 39.62
equake 17.14 17.75 15.91 16.56 15.17 15.85
facerec 13.69 13.71 1.28 1.95 2.54 2.75
gap 11.85 6.77 25.77 10.52 23.24 5.00
gcc 25.39 27.67 26.33 28.40 28.25 29.94
gzip 16.82 18.17 21.95 23.11 28.54 29.37
mcf 3.63 3.39 4.80 4.54 6.34 6.04
mesa 45.21 39.28 22.57 16.68 30.26 20.35
mgrid 26.90 25.53 18.20 12.35 1.25 3.44
parser 14.15 15.19 13.27 14.86 14.33 16.12
perlbmk 19.36 19.33 17.21 17.63 18.48 19.69
sixtrack 36.29 36.29 2.49 2.52 1.16 1.41
swim 2.92 100.00 5.96 100.00 14.60 100.00
twolf 13.29 13.25 12.33 12.31 15.99 15.97
vortex 16.18 15.96 15.89 15.50 23.66 22.93
vpr 15.48 16.28 13.29 14.93 15.13 17.52
wupwise 15.92 17.51 4.28 6.43 6.44 6.30

Table A.2: OPT Miss Rate Improvement Percentage over LRU for 4-way Associative 8K,
16K, 32K Caches
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A.3 Multi-tag Sharing

Some details of the ways to reduce the tag overhead in the context of multi-tag sharing

approach for partitioning are described below:

• Rotating tags: The idea is that when a cache line data space is shared by more than

one tag, then the tags effectively rotate to bring out a different tag for comparison.

The other tag(s) is(are) driven on the lines that are stored in a buffer for comparison in

subsequent cycles. This approach maintains the same associativity logic, but provides

the possibility of using more than one tag per cache line. This can effectively increase

the associativity without increasing the delay.

• Differential tags: In order to reduce the tag overhead, the tags can be stored as

differentials with respect to one tag. The tag can be divided into different parts such

as [part1, part2, part3, part4] and the differential information can be stored based on

these parts. Depending on the space available, more than one part can differ and the

corresponding bit masks are kept to construct a different tag. The differential tags

are used to minimize the tag space such that more tags can be stored and share the

cache line space.

• Table of Distinct Tags: This is another way to reduce the overhead of the tags. A

table stores distinct tags and the cache line tag space has an index in this table to get

the actual tag. But, this will slow down the hit time because of an additional lookup.
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Figure A-3: Cumulative Set Reuse Distance Profiles for Spec2000FP benchmarks (applu,
swim, art, mgrid, apsi, ammp) for 100M and 1B instructions using a 4-way 16K Cache
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Figure A-4: Cumulative Set Reuse Distance Profiles for Spec2000FP benchmarks (equake,
facerec, mesa, sixtrack, wupwise) for 100M and 1B instructions using a 4-way 16K Cache
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Figure A-5: Cumulative Set Reuse Distance Profiles for Spec2000INT benchmarks (gzip,
gcc, parser, mcf, vpr, twolf) for 100M and 1B instructions using a 4-way 16K Cache
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perlbmk: Stack Reuse Distance Profile
100M

1B

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

Set Stack Reuse Distance
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Figure A-6: Cumulative Set Reuse Distance Profiles for Spec2000INT benchmarks (gap,
vortex, perlbmk, bzip2, crafty, eon) for 100M and 1B instructions using a 4-way 16K Cache
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